Industry Heterogeneity and Wage Inequality

Mitchell Valdes-Bobes

August 30, 2022

Introduction

- Wage Inequality has risen since the 1980s.
- The distribution of wages inside firms does not follow the same trend as the entire economy.
- Song, Price, Guvenen, Bloom, and Von Wachter (2019), show that a substantial part of the rise in dispersion has occurred between firms instead of within firms.
- At the same time there has been an increase in occupational and educational, segregation of employees.

Introduction

- I want to focus on two trends and their relationship:
 - the change in the composition of the workforce, the Labor Input Ratio of skilled to unskilled workers.
 - The change on the premium paid to skilled workers.

Introduction

- To analyze the relationship between those trends I will use the model proposed by Krusell, Ohanian, Ríos-Rull, and Violante (2000) (KORV).
- This model allows to isolate two effects influencing the growth of the skill premium:
 - the effect of the relative input of skilled vs. unskilled workers.
 - the effect of skill-biased technological change. (Capital-skill complementarity hypothesis)
- I will analyze these effects have evolved industry level.

Objectives

This work has two primary objectives:

- Extend the analysis from KORV beyond the original period.
- Evaluate the capital-skill complementarity hypothesis at the industry level.

Motivation

- In a recent work Haltiwanger, Hyatt, and Spletzer (2022), show that the rise in wage inequality is concentrated in a small number of industries (about 10%).
 - They analyze industries at the 4-digit NAICS level.
 - Due to data availability limitations I work at a higher level of aggregation.
- As in Haltiwanger, Hyatt, and Spletzer (2022), Industries in my sample exhibit a
 positive correlation between mean wage and wage inequality.

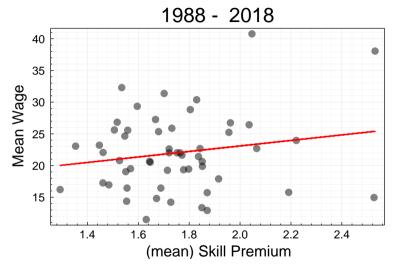


Figure: Relationship between skill premium and mean wage.

Data

- Following the methodology of Ohanian, Orak, and Shen (2021), I built data series for wages, labor input, and capital input from 1963 to 2018.
 - The original data from KORV covers the period from 1963 to 1992.
- I then Re-create the same series for 56 industry groups for the period from 1998 to 2018.

Capital Data

- I obtained investment series in equipment (I_e) and structures (I_s) from NIPA.
- Equipment (K_e) and structure (K_s) capital series were constructed using the perpetual inventory method:

$$K_{i_{t+1}} = (1 - \delta_{i_t})K_{i_t} + I_{i_t} \qquad i \in \{e, s\}$$

- To obtain capital series at the industry level I used the BEA Fixed Assets dataset.
- This dataset contains 76, industry groups.

Labor Shares

- To construct series of the labor share of income by industry, I used the BEA-BLS Integrated Industry-level Production Accounts (KLEMS),
- KLEMS data consists of 56 industry groups some of which are aggregations of industries on the BEA dataset.

Labor Data

- Labor input and wages are estimated using the march supplement of the Current Population Survey (CPS).
- Again, I follow the methodology of Ohanian, Orak, and Shen (2021) to clean and aggregate the data.
- To obtain industry-level data I partitioned the CPS dataset into the 56 industry groups for which capital data is available and then aggregate repeating the same procedure as before.
- The classification of a worker being a skilled or an unskilled worker is based on the latest year of education completed, a worker with 4 years or more of college education is considered skilled.

Industry Groups

- I used the crosswalk between the KLEMS, BEA, and CPS industry codes provided by Acemoglu, and Restrepo (2020) to map the industry codes.
- KLEMS codes are often the combination of the several BEA and CPS codes:

Industry Groups

- I used the crosswalk between the KLEMS, BEA, and CPS industry codes provided by Acemoglu, and Restrepo (2020) to map the industry codes.
- KLEMS codes are often the combination of the several BEA and CPS codes:
 - Oil and gas extraction: KLEMS-211, BEA-2110, CPS-42
 - Hospitals and nursing and residential care facilities: KLEMS-622HO, BEA-622h, 6230, CPS-831,832 and 870.
 - The largest KLEMS code (Retail trade) consists of 131 CPS codes.

- To check the relationship between the trends of labor input ratio and the skill premium, I computed the slope of each series in the period:

- To check the relationship between the trends of labor input ratio and the skill premium, I computed the slope of each series in the period:

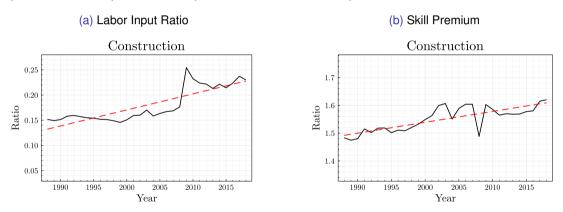


Figure: Trends for the 1988 – 2018 period.

 To check the relationship between the trends of labor input ratio and the skill premium, I computed the slope of each series in the period:

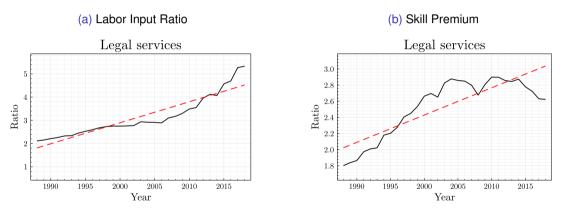


Figure: Trends for the 1988 – 2018 period.

- To check the relationship between the trends of labor input ratio and the skill premium, I computed the slope of each series in the period:
- For 49 industries (87.5%) the skill premium increased in the period the input ratio showed the same pattern for 52 (92.8%) industries.

Industry Level Trends • Back

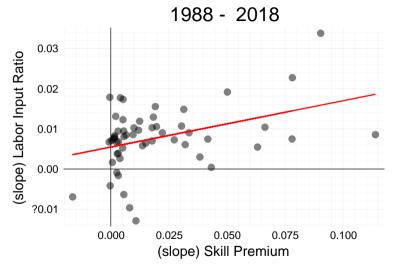


Figure: Realtionship between the trends of Labor Input and Skill Premium. For 84% both trends are increasing.

Model

- In the next slides I will present the model and show how it can be employed to decompose the growth of the skill premium.
- Then I will briefly explain the estimation procedure.

KORV

- Two types of capital
 - k_s , structures.
 - Buildings.
 - k_e , equipment, with a relative price equal to 1/q
 - Machines, computers, intellectual property.
- Two types of labor
 - u low-skilled labor.
 - $u = \psi^u h_u$ where h_u is hours (observed) and ψ^u is the quality of low-skilled labor (unobserved).
 - s high-skilled labor.
 - $s=\psi^S h_S$ where h_S is hours (observed) and ψ^S is the quality of high-skilled labor (unobserved).

KORV

- There are three final goods:
 - Consumption c
 - Structure investment is
 - Equipment investment i_e.
- Aggregate production:

$$c_t + i_{e_t} + i_{s_t} = Y_t = A_t G(k_{s_t}, k_{e_t}, u_t, s_t)$$
 (1)

Production function

- The production function is:

$$G(k_{s_t}, k_{e_t}, u_t, s_t) = k_{s_t}^{\alpha} \left(\mu u_t^{\sigma} + (1 - \mu) \left(\lambda k_{s_t}^{\rho} (1 - \lambda) s_t^{\rho} \right)^{\frac{\sigma}{\rho}} \right)^{\frac{1 - \alpha}{\sigma}}$$
(2)

- $\sigma_H = 1/(1-\rho)$ is the elasticity of substitution between equipment and high-skilled.
- $\sigma_L = 1/(1-\sigma)$ is the elasticity of substitution between low-skilled and equipment + high-skilled.
- Firms solve the following profit maximization problem

$$\max_{k_{s_t}, k_{e_t}, u_t, s_t} G(k_{s_t}, k_{e_t}, u_t, s_t) - r_{s_t} k_{s_t} - r_{e_t} k_{e_t} - w_{u_t} h_{u_t} - w_{s_t} h_{s_t}$$
 (3)

Production Function

- My objective is to use this model to test whether the change in the wage premium for skilled labor in different industries can be explained using the capital-skill complementarity hypothesis.
- Next, I show how we can obtain the growth rate of the skill premium from optimality conditions of the Firm.

Skill Premium in the Model

 Assuming competitive markets, workers are paid their marginal products per unit, of work:

$$\omega_{t} = \frac{w_{s_{t}}}{w_{u_{t}}} = \frac{G_{h_{s}}(k_{s_{t}}, k_{e_{t}}, u_{t}, s_{t})}{G_{h_{u}}(k_{s_{t}}, k_{e_{t}}, u_{t}, s_{t})}$$

- We can obtain the following (log-linearized) expression for ω_t :

$$\ln \omega_t \simeq \lambda \frac{\sigma - \rho}{\rho} \left(\frac{k_{e_t}}{s_t} \right)^{\rho} + (1 - \sigma) \ln \left(\frac{h_{u_t}}{h_{s_t}} \right) + \sigma \ln \left(\frac{\psi_t^s}{\psi_t^u} \right) \tag{4}$$

- Which in turn can be written in terms of growth rates (g_x) :

$$g_{\omega t} \simeq (1 - \sigma) \left(g_{h_{u_t}} - g_{h_{s_t}} \right) + \sigma \left(g_{\psi_t^s} - g_{\psi_t^u} \right)$$

$$+ (\sigma - \rho) \lambda \left(\frac{k_{e_t}}{s_t} \right)^{\rho} \left(g_{k_{e_t}} - g_{h_{s_t}} - g_{\psi_t^s} \right)$$

$$(5)$$

Skill Premnium Decomposition

We have decomposed the skill premium into three parts:

- $(1-\sigma)(g_{h_{u_t}}-g_{h_{s_t}})$ depends on the difference of the growth rates of skilled and unskilled and labor.
 - If both types of labor are substitutes i.e $\sigma_u < 0 \implies (1 \sigma) < 0$
 - If skilled labor grows at a faster rate than unskilled labor, then the skill premium decreases. Data

Skill Premnium Decomposition

We have decomposed the skill premium into three parts:

- $\sigma\left(g_{\psi_t^s}-g_{\psi_t^u}\right)$ depends on the growth rate of the productivity of skilled and unskilled and labor.
 - I follow KORV in making the following stochastic assumptions about labor productivity:

$$\psi_t^i = \psi_0^i + \epsilon \qquad \epsilon \sim N(0, \eta_\omega^2) \qquad i \in \{s, u\}$$
 (6)

- On average $\sigma(g_{\psi^s_t}-g_{\psi^u_t})$ is constant over time and does not affect the growth rate of the skill premium.

Skill Premnium Decomposition

We have decomposed the skill premium into three parts:

-
$$(\sigma-\rho)\lambda\left(rac{k_{e_t}}{s_t}
ight)^{
ho}\left(g_{k_{e_t}}-(g_{h_{s_t}}+g_{\psi_{s_t}})\right)$$
. This component depends on two factors:

- 1. The growth rate of equipment relative to the growth rates of skilled labor input.
 - Characterize the capital-skill complementarity hypothesis as $\sigma > \rho$.
 - If equipment capital grows faster than skilled labor, the skill-premium will increase.
- The ratio of capital equipment to skilled labor
 - The effect will get larger (smaller) over time if $ho > 0 \ (
 ho < 0)$.

Estimation

- I follow the same methodology as KORV to estimate the model parameters.
- To simplify notation:

$$\begin{aligned} \psi_t &= \{ \psi_t^u, \psi_t^s \} \\ X_t &= \{ k_{s_t}, k_{e_t}, h_{s_t}, h_{u_t} \} \\ \Phi &= \{ \alpha, \sigma, \rho, \mu, \lambda, \psi_0^u, \psi_0^s, \eta_\omega \} \end{aligned}$$

- Any of $\{\mu, \lambda, \psi_0^u, \psi_0^s\}$ act as scaling parameters thus, one can be fixed.
- There are 7 parameters to be estimated.

Estimation

- The parameters are estimated using the following structural equations:

$$\begin{split} \frac{\textit{w}_{\textit{S}_{\textit{t}}}\textit{h}_{\textit{S}_{\textit{t}}} + \textit{w}_{\textit{U}_{\textit{t}}}\textit{h}_{\textit{U}_{\textit{t}}}}{\textit{Y}_{\textit{t}}} &= \textit{Ish}(\textit{X}_{\textit{t}}, \psi_{\textit{t}} \mid \Phi) \\ \frac{\textit{w}_{\textit{S}_{\textit{t}}}\textit{h}_{\textit{S}_{\textit{t}}}}{\textit{w}_{\textit{U}_{\textit{t}}}\textit{h}_{\textit{U}_{\textit{t}}}} &= \textit{wbr}(\textit{X}_{\textit{t}}, \psi_{\textit{t}} \mid \Phi) \\ \textit{A}_{\textit{t+1}}\textit{G}_{\textit{k}_{\textit{S}}}(\textit{X}_{\textit{t+1}}, \psi_{\textit{t+1}} \mid \Phi) &= \textit{q}_{\textit{t}}\textit{A}_{\textit{t+1}}\textit{G}_{\textit{k}_{\textit{S}}}(\textit{X}_{\textit{t+1}}, \psi_{\textit{t+1}} \mid \Phi) + (1 - \delta_{\textit{e}})\left(\frac{\textit{q}_{\textit{t}}}{\textit{q}_{\textit{t+1}}}\right) + \nu_{\textit{t}} \end{split}$$

Estimation

- The estimation method is a two-stage simulated pseudo-maximum likelihood estimation (SPMLE).
- In the first stage labor input is considered to be endogenous and is instrumented using: both capital series, lagged capital series, lagged prices, and indicators of the business cycle.
- In the second stage:
 - Taking the variance η_{ω} as given, for each date t, generate S realizations of the model.
 - For each date *t* calculate the mean and covariance matrix.
 - Minimize the distance between the first moments of the model and the data, using the second moment as a weighting matrix.

Results

- First, I will show the results of the replication of the model using updated data.
- Second, I will show the results of applying the model to each industry.

	KORV Estimation	Replication	Updated Data	Updated Data
	1963 - 1992	1963 - 1992	1963 - 2018	1988 - 2018
α	0.117	0.113	0.118	0.08
σ	0.401	0.464	0.503	0.313
ρ	-0.495	-0.56	-0.343	-0.154
η_{ω}	0.043	0.043	0.083	0.043

Table: Parameter estimates KORV model.

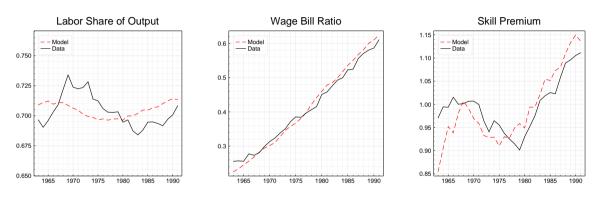


Figure: Fit for the 1963 - 1992 period with KORV Data.

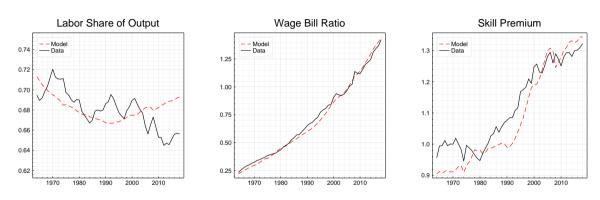


Figure: Fit for the 1963 - 2018 period with Updated Data.

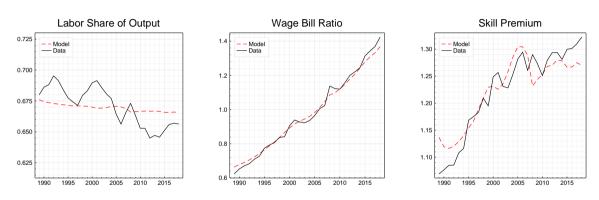


Figure: Fit for the 1988 - 2018 period with Updated Data.

Caveats

- Convergence is highly sensitive to the initial conditions.
 - Not a problem when estimating KORV.
 - But when estimating the model for each industry, the initial conditions are not well defined.
- Initially I tried to sweep the parameter space to find the best initial conditions, I tried 10 values for each parameter (total of 700 points), but it took me more than a day to run the code.
- I settled on 10 initial conditions.

Industry Level Results

	Updated Data	Industry Level	Industry Level
	1988 - 2018	(mean)	(std)
α	0.08	0.241	0.206
σ	0.313	0.483	0.710
ρ	-0.154	-0.289	0.816
η_{ω}	0.043	0.131	0.195

Table: Industry Level Estimates.

Industry Level Results

- On average the Capital-skill complementarity hypothesis $(\sigma>\rho)$ is held at the industry level.
- Specifically, the hypothesis holds for 44 of 56 (78.8%) industries.

Future Work

- Improve the estimation using an altertive methodology, e.g.
 - Polgreen, and Silos(2008) discuss the sentitivity of KORV to variations in the data and propose a methodology to estimate the parameters that avoid the instabilities that can arise in maximizing a multidimensional function numerically
- Incorporate alternative sources of data. Specifically, Quarterly Workforce Indicators (QWI, published as part of the Longitudinal Employer-Household Dynamics. This will allow me to avoid having to segment the CPS data to estimate the labor input and wage series at the industry level.

References

- Song, Jae, David J. Price, Fatih Guvenen, Nicholas Bloom, and Till Von Wachter. "Firming up inequality." The Quarterly journal of economics 134, no. 1 (2019): 1-50.
- Krusell, Per, Lee E. Ohanian, José-Víctor Ríos-Rull, and Giovanni L. Violante. "Capital-skill complementarity and inequality: A macroeconomic analysis." Econometrica 68, no. 5 (2000): 1029-1053.
- Haltiwanger, John C., Henry R. Hyatt, and James Spletzer. Industries, mega firms, and increasing inequality. No. w29920. National Bureau of Economic Research, 2022.
- Ohanian, Lee E., Musa Orak, and Shihan Shen. Revisiting capital-skill complementarity, inequality, and labor share. No. w28747. National Bureau of Economic Research, 2021.
- Acemoglu, Daron, and Pascual Restrepo. "Unpacking skill bias: Automation and new tasks." In aea Papers and Proceedings, vol. 110, pp. 356-61. 2020.
- Polgreen, Linnea, and Pedro Silos. "Capital–skill complementarity and inequality: A sensitivity analysis." Review of Economic Dynamics 11, no. 2 (2008): 302-313.