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Abstract

I reexamine the capital-skill complementarity hypothesis at the industry level
as a driver of wage inequality between skilled and unskilled workers. Using the
model of Krusell, Ohanian, Rios-Rull, and Violante (2000), I decompose skill premium
growth into counteracting effects: the negative supply effect and the positive capital-
skill complementarity effect from technological change. Estimating the model for 53
U.S. industries over 1988-2018, I find that capital-skill complementarity holds in 44
industries (83%), with substantial heterogeneity in substitution elasticities (¢ ranges
from —3.75 to 1.00, p from —2.23 to 1.00). In 22 of 28 industries (78.6%), the capital-
skill complementarity channel dominates supply effects, with median contributions
of 1,261% versus -685%. These findings demonstrate that technology-driven demand
shifts, rather than supply increases, are the primary driver of skill premium growth,
with important implications for education and technology policies.
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1 Introduction

Understanding the drivers of wage inequality has become one of the central challenges
in labor economics and a major concern for policymakers. Over the past four decades,
the United States has experienced a dramatic rise in earnings inequality, with profound
implications for economic mobility, social cohesion, and the sustainability of the middle
class. Between 1980 and 2018, the share of income going to the top 10% of earners
increased from 34% to 47%, while real wages for workers at the median have stagnated
(Piketty, 2014). The ratio of wages at the 90th percentile to those at the 10th percentile
rose by more than 50% over this period. These trends have sparked intense debates
about whether inequality is driven primarily by technological change, globalization,
institutional factors such as declining unionization, or some combination of these forces.
Understanding which mechanisms are most important is crucial for designing effective
policy responses, from education and training programs to tax policy and labor market
regulation.

Wage inequality has risen in the US since the 1980s (see Acemoglu and Autor
(2011)). In the same period, the skill composition of the labor market in the US changed
dramatically. The relative supply of skilled to unskilled labor (as defined by education)
has risen from around 0.57 in 1988 to 1.06 in 2018. Skilled workers made 1.1 times higher
wages than unskilled workers at the beginning of the period and the ratio has steadily
increased to 1.4. This fact suggests that the relative demand for skilled labor must have
also increased. This pattern presents a puzzle from the perspective of standard supply
and demand analysis: when the supply of a factor increases, its relative price should fall,
holding demand constant. Yet we observe the opposite—both the quantity and relative
price of skilled labor are rising simultaneously. This can only be reconciled if the demand
curve for skilled labor has shifted outward substantially, and at a rate that more than
offsets the supply increase. The key question, then, is what has driven this large shift in
relative demand, and whether this phenomenon operates uniformly across all sectors of
the economy or varies systematically across industries.

A large body of research has identified skill-biased technological change as the
primary driver of increased demand for skilled labor. Many studies (e.g. Katz and
Murphy (1992); Krusell et al. (2000); Card and DiNardo (2002); Acemoglu (2002)) have
found that changes in technology that increase the marginal productivity of skilled labor
relative to unskilled labor (capital-skill complementarity) can explain the rising skill
premium despite increasing supply of educated workers.

The seminal work of Krusell et al. (2000), henceforth KORV, proposes a model
that explicitly features capital-skill complementarity through a nested CES production



function. They capture technological change as a relative decrease in the prices of
equipment capital relative to capital structures, which leads to rapid growth in the stock
of equipment. In their framework, equipment capital interacts with different types of
labor in distinct ways: equipment is more complementary with skilled labor than with
unskilled labor, generating a positive effect on the relative demand for skilled workers as
equipment becomes cheaper and more abundant.

The key testable implication of the KORV model is straightforward: the elasticity
of substitution between capital equipment and unskilled labor must be higher than the
elasticity of substitution between capital equipment and skilled labor. This parameter
restriction provides a relatively easy way to test the capital-skill complementarity
hypothesis empirically, making the model particularly tractable for empirical work.

However, aggregate analysis may mask substantial heterogeneity across industries
in how technological change affects wage inequality. Industries differ dramatically
in their technology adoption rates, capital intensity, skill composition, and exposure
to automation. For example, manufacturing sectors like computer and electronics
manufacturing invested heavily in advanced equipment and robotics during this period,
while service sectors like food service and accommodation relied more on traditional
production methods.  Similarly, professional services industries began with high
skill intensities and experienced rapid computerization, whereas retail trade remained
relatively low-skill intensive despite adopting point-of-sale and inventory management
technologies. These differences in initial conditions and technology trajectories suggest
that the capital-skill complementarity mechanism may operate with varying strength
across industries, and that aggregate estimates could obscure important sectoral patterns
in wage inequality.

As David and Dorn (2013) shows, not all labor markets are impacted by technological
change in the same way. Some markets have adopted technology at a faster rate
pushing low-skill labor into service occupations thus causing (employment polarization).
Song et al. (2019) show that the distribution of wages inside firms does not follow
the same trend as the entire economy, a substantial part of the rise in dispersion has
occurred between firms instead of within firms. Specifically, they point to two effects:
(i) sorting effect, high-wage workers are increasingly likely to work for more productive
tirms, and (ii) segregation effect, high-paying workers to be working with each other
more frequently. More recently, Haltiwanger et al. (2022) show that the rise in wage
inequality is concentrated in a small number of industries (about 10%). These patterns
suggest fundamental differences in how industries experience technological change and
its labor market consequences. For instance, high-tech manufacturing industries like
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skill premiums, while traditional manufacturing sectors like textile mills saw capital
substitution for both skill types. Similarly, finance and business services witnessed
dramatic computerization that amplified returns to cognitive skills, whereas construction
and personal services remained largely insulated from capital-skill complementarity
effects due to the non-routine nature of their production processes.

In this paper, I reexamine the capital-skill complementarity hypothesis at the industry
level as the driver of the increase in wage inequality between skilled and unskilled
workers. I use the model proposed by KORV to decompose the growth of the skill
premium into counteracting effects: (i) the negative effect in the relative price of skilled
labor due to its relative increase in supply and (ii) the positive effect of the increase in
the marginal productivity of skilled workers relative to unskilled due to technological
change (capital-skill complementarity). My goal is to explain the pattern I observe
in the data: a positive relationship between the growth of the skill premium and the
growth of the proportion of skilled workers in each industry. I show that for 44 of 53
industries (83%) in the sample, the capital-skill complementarity condition (¢ > p) holds,
and for 22 of 28 successfully decomposed industries (78.6%), the increase in demand
due to capital-skill complementarity dominates the supply effect. The median industry
shows CSC contributing 1,261% of observed skill premium growth compared to -685% for
supply effects, demonstrating that technology-driven demand shifts overwhelm supply
increases even as the college-educated workforce doubled. This quantitative dominance
of the CSC channel provides strong evidence that technological change, rather than
insufficient skill supply growth, is the primary driver of rising wage inequality across
most sectors of the U.S. economy.

The industry-level decomposition reveals striking heterogeneity in how technology
affects different sectors. Professional services like Legal Services (¢ = 1.0, p = 0.11)
and Management of Companies (¢ = 0.97, p = —0.19) exhibit very strong capital-skill
complementarity, with equipment capital directly augmenting cognitive tasks performed
by college-educated workers. Manufacturing sectors show mixed patterns: while
some like Electrical Equipment Manufacturing display strong CSC, others like Food
Manufacturing (¢ = —1.31, p = —1.38) show weak or negative complementarity.
The six industries where supply effects dominate CSC—Mining (211, 212, 213), Food
Manufacturing (311FT), Motor Vehicles (3361MV), and Retail Trade (44RT)—tend to be
traditional sectors with slower technology adoption. These findings have important
policy implications: if CSC’s median 1,261% contribution far exceeds supply’s -685%
contribution, then education policy alone cannot address inequality without considering
how curricula prepare workers for technology-intensive occupations. The heterogeneity
across industries (0 — p ranging from -1.67 to +1.00) suggests that targeted, industry-



specific workforce development programs may be more effective than one-size-fits-all
approaches.

There are a number of previous works that extend KORV (e.g. Polgreen and Silos
(2008), Maliar et al. (2020),0Ohanian et al. (2021), Castex et al. (2022)). I deviate very
little from these studies in data construction and estimation processes, and the aggregate
results obtained in this work are consistent with the previous literature. However, to
the best of my knowledge, this is the first paper to systematically estimate capital-skill
complementarity at the industry level using the KORV framework and to decompose
skill premium growth into supply and CSC channels for individual industries. Prior
work focused exclusively on aggregate estimation (replicating KORV with updated
data or alternative methodologies) or examined inequality patterns across industries
without structural decomposition. My contribution is threefold: (1) I construct the
tirst comprehensive industry-level dataset combining BEA capital stocks, CPS wage
and employment data, and consistent industry mappings spanning 1988-2018 for 53
industries; (2) I estimate industry-specific substitution elasticities revealing substantial
heterogeneity (¢ € [—3.75,1.00], p € [—2.23,1.00]) masked by aggregate analyses,
with aggregation bias evident in capital share parameters (mean industry: 0.241 versus
aggregate: 0.08); and (3) I provide the first quantitative decomposition showing that CSC
dominates supply effects in 78.6% of industries with median contributions of 1,261%
versus -685%, directly testing the technology-versus-supply debate at a granular level.
This industry-level approach bridges macroeconomic theory with the recent empirical
literature on industry and firm heterogeneity in inequality dynamics (Haltiwanger et al.,
2022; Song et al., 2019), allowing me to identify which sectors experience the strongest
technology-driven inequality and whether this correlates with industry characteristics
like skill intensity or capital deepening rates.

The rest of the paper is organized as follows. Section 2 presents the nested CES
production function from KORV (2000) with capital equipment, capital structures, skilled
labor, and unskilled labor, and derives the analytical decomposition of skill premium
growth into supply and demand components. The key theoretical insight is that declining
equipment prices drive capital deepening that disproportionately raises skilled workers’
marginal productivity when equipment and skilled labor are sufficiently complementary.
Section 3 describes the construction of industry-level panel data spanning 1980-2019
from multiple sources including BEA capital stocks, Census wage and employment data,
and NIPA price deflators, with particular attention to the measurement of skill (college
versus non-college workers) and the consistent mapping of industries across classification
system changes. Section 4 explains the calibration of key elasticity parameters using

aggregate moments and the estimation of remaining parameters via nonlinear least



squares at both aggregate and industry levels, finding substantial heterogeneity in
estimated complementarity across sectors. Section 5 presents the main decomposition
results, showing that for 78.8% of industries, capital-skill complementarity effects
dominate supply increases, with particularly strong demand effects concentrated in high-
tech manufacturing and professional services, while traditional manufacturing and low-
skill services exhibit weaker complementarity. Finally, Section 7 summarizes the findings
and discusses implications for understanding inequality dynamics and targeting policy

interventions.

1.1 Literature Review

This section situates our study within the literature on wage inequality and technological
change, focusing on capital-skill complementarity and the recent evidence on industry
heterogeneity.

Capital-Skill Complementarity. The capital-skill complementarity hypothesis, first
formalized by ?, posits that physical capital is more complementary with skilled than
unskilled labor. Using manufacturing data, Griliches showed that the elasticity of
substitution between capital and unskilled labor exceeds that between capital and skilled
labor, providing an explanation for rising skill demand despite increasing skill supply.

Krusell et al. (2000) embedded this hypothesis in a tractable macroeconomic
model with a nested CES production function distinguishing capital structures, capital
equipment, skilled labor, and unskilled labor. Their key insight is that the secular
decline in equipment prices drove capital deepening that disproportionately raised
skilled workers” marginal product, explaining most skill premium variation from 1963-
1992. Polgreen and Silos (2008) found this result “extremely robust” to alternative price
series, while Ohanian et al. (2021) confirmed its importance through 2019, though with
modestly smaller estimated complementarity to match recent labor share declines. The
parameter sensitivity across periods suggests the aggregate model may average over
heterogeneous industry-level structures, motivating disaggregated analysis.

Broader Inequality Literature. The dominant explanation for rising wage inequality has
been skill-biased technological change (Katz and Murphy, 1992; ?), though Card and
DiNardo (2002) challenged this view by highlighting timing mismatches and the role of
institutional factors like the declining minimum wage. ? reconciled these perspectives by
documenting divergent trends: persistent upper-tail (90/50) inequality growth versus
stabilizing lower-tail (50/10) inequality after 1990, suggesting different mechanisms
operate in different parts of the distribution.

The task-based approach (?Acemoglu and Autor, 2011) refined the analysis by



focusing on how technology affects specific job tasks rather than broad skill categories.
Routine-biased technical change—where computers substitute for routine tasks but
complement non-routine cognitive tasks—explains labor market polarization with
declining middle-skill jobs and growth at both tails. This framework implies that
technological impact varies by industry task composition, providing theoretical rationale
for industry-level analysis.

Industry and Firm Heterogeneity. Recent work using matched employer-employee
data reveals that inequality increasingly arises between rather than within firms. Song
et al. (2019) show two-thirds of the 1978-2013 earnings variance increase occurred
between firms, driven by sorting (high-wage workers moving to high-paying firms)
and segregation (clustering of similar workers). Critically, Haltiwanger et al. (2022)
demonstrate this phenomenon is concentrated in just 10% of industries—high-paying
tech sectors like software publishing at the top, and low-paying retail and food services
at the bottom. ?? document similar spatial concentration, with routine-intensive
manufacturing areas experiencing job polarization while import-exposed regions saw
employment declines.

Research Gap. Despite this evidence of profound industry heterogeneity, no prior
study has systematically applied the KORV capital-skill complementarity framework at
the industry level. We bridge the macroeconomic theory of technological change with
granular evidence on industrial transformation by decomposing skill premium growth
industry-by-industry. This allows us to test whether industries identified as inequality
hotspots are those where capital deepening most strongly shifts demand toward skilled
workers, providing a more complete picture of inequality drivers than aggregate or

micro-level analyses alone.

2 Model

I adopt the capital-skill complementarity framework developed by Krusell et al. (2000),
which has become the benchmark model for quantifying the role of technological change
in skill premium dynamics. This model is particularly well-suited for industry-level
analysis for three reasons. First, it provides a structural decomposition that separates
observable supply effects (changes in skill composition) from demand effects (capital
deepening and productivity shifts), allowing us to measure which force dominates in
each industry. Second, the model’s key parameters—elasticities of substitution between
different factor pairs—have clear economic interpretations and can be estimated or
calibrated using standard data on wages, employment, and capital stocks. Third, the

nested CES structure naturally embeds the capital-skill complementarity hypothesis

7



while nesting simpler specifications (like Cobb-Douglas) as special cases, making
it flexible enough to capture heterogeneity across sectors with different production
technologies. The model distinguishes four production inputs organized in a nested
structure: capital equipment and structures interact differently with skilled and unskilled
labor, with equipment hypothesized to complement skilled workers more than unskilled
workers. The following subsections present the production technology, derive the skill
premium decomposition, and explain the economic mechanisms through which capital
accumulation affects relative wages.

This section presents the model which is the same as KORV. There are four inputs
for production in this economy: two types of capital, equipment (k.) and structures (ks),
and two types of labor, skilled (s) and unskilled (u). Inputs are combined through a
production function, G(-), to produce three final goods: consumption (c), investment in
equipment (7,) and investment in structures (is). Assuming a hicks-neutral technological
shock Ay, the aggregate production is given by

ct + 1o, +1s, = Y = ArG(ks,, ke,, 111, 5¢) (1)

This production function captures the economy’s resource constraint: total output
Y; must equal the sum of consumption and gross investment in the two capital
types. The Hicks-neutral technology parameter A; represents productivity improvements
that proportionally enhance the efficiency of all inputs. Crucially, the model
distinguishes equipment capital (machinery, computers, vehicles) from structures
(buildings, infrastructure) because their interactions with labor differ fundamentally—
equipment can substitute for or complement specific labor tasks, while structures
primarily provide workspace. The production of three distinct goods reflects the dual
role of output: satisfying current consumption and building future productive capacity
through two distinct capital accumulation processes.
Capital evolves according to the standard law of motion:

K = (1 — 5it)Kit + I i€ {e,s} (2)

i1
Depreciation rates J;, differ substantially between equipment and structures, reflecting
their distinct physical characteristics. Equipment typically depreciates at 10-15% annually
due to wear, obsolescence, and rapid technological change, while structures depreciate
at only 2-4% annually due to their longer physical lifespan and slower technological
obsolescence. These differences matter for understanding capital-skill complementarity

because the secular decline in equipment prices documented by KORV induced much



faster equipment accumulation relative to structures, and it is specifically equipment
capital that complements skilled labor. The use of time-varying depreciation rates in our
empirical implementation allows us to capture changes in asset composition within each
category—for example, the shift toward shorter-lived computer equipment within the
equipment stock.

The production function is assumed to be Cobb-Douglas in structures and a nested

CES in all other inputs:

1—w
a

G (K, ket 5t) = K (quaed + (1= 1) (AKE, + (1= M)sf)?) 3)

where « is the share of capital structures in output, y, and A are income shares, p and o

govern the elasticity of substitution between capital equipment and labor:

* 05, =1/(1 — p) is the elasticity of substitution between equipment and high-skilled.

e 0, = 1/(1 — 0) is the elasticity of substitution between low-skilled and equipment
+ high skill labor.

The nested CES structure is the heart of the model and embeds the capital-skill
complementarity hypothesis in a flexible and empirically tractable way. Unlike a Cobb-
Douglas production function, which imposes unitary elasticities of substitution between
all input pairs, the CES form allows different input pairs to have different elasticities,
thus permitting some inputs to be complements (elasticity less than one) while others are
substitutes (elasticity greater than one). This flexibility is essential because the capital-
skill complementarity hypothesis fundamentally claims that capital equipment relates
differently to skilled versus unskilled labor.

The specific nesting structure chosen by KORV has clear economic motivation. At
the top level, structures capital enters in a Cobb-Douglas fashion, reflecting the empirical
regularity that structures—buildings, infrastructure—provide a relatively homogeneous
workspace for production and interact symmetrically with other inputs. The interesting
substitution patterns occur among equipment, skilled labor, and unskilled labor, which
are nested in a two-stage CES. In the inner nest, equipment capital (k.) and skilled
labor (s) combine with elasticity 0; = 1/(1 — p). In the outer nest, this equipment-skill
composite combines with unskilled labor (1) with elasticity o, = 1/(1 — o).

The capital-skill complementarity hypothesis holds when p < ¢, which implies
0s < 0y. Economically, this means equipment and skilled labor are more complementary
(harder to substitute for each other) than equipment and unskilled labor. When
equipment becomes cheaper and firms accumulate more of it, unskilled workers can be

more easily replaced, while skilled workers become more productive as they work with
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more advanced equipment. For example, computerization in accounting substituted for
bookkeepers (unskilled) but complemented financial analysts (skilled) who used software
to perform more complex tasks.

The parameters have straightforward interpretations. The share parameter a ~ 0.10 —
0.15 indicates structures account for 10-15% of output in equilibrium. The distribution
parameters y and A govern income shares: u determines the unskilled labor share,
while A determines the equipment share within the equipment-skill composite. Typical
calibrations yield y ~ 0.40 — 0.50 and A ~ 0.30 — 0.40. The substitution parameters p
and ¢ are the key behavioral parameters. KORV’s estimates suggest p ~ 0.40 (implying
s ~ 1.67) and ¢ ~ —0.50 (implying 0, ~ 0.67), confirming strong complementarity
between equipment and skilled labor.

Alternative nesting structures were considered in the literature. One could nest
skilled and unskilled labor first, then combine them with equipment. However, this
structure cannot generate the differential response of skilled and unskilled wages
to equipment accumulation that is central to the capital-skill complementarity story.
Another alternative is a fully flexible three-level CES that allows distinct elasticities for
all input pairs, but such a specification is difficult to identify empirically without strong
functional form assumptions. The KORV nesting strikes a balance between flexibility
and parsimony: it has enough structure to embed capital-skill complementarity while
remaining empirically tractable with readily available data.

Labor input is defined as

u = pihy s = Pih;

where 1! is the (unobserved) efficiency of each type of labor and k! is the number of
labor hours. This decomposition separates the quantity of labor (hours worked) from
its quality (efficiency units per hour), allowing the model to account for within-group
productivity improvements over time. Efficiency y! captures factors like experience,
training, and unmeasured skill improvements within the skilled and unskilled categories.
Distinguishing hours from efficiency is crucial for the empirical analysis: we observe
hours and wages in the data, but efficiency must be inferred. The model treats efficiency
as evolving stochastically (equation 9 below), which allows for transitory productivity
shocks while maintaining that long-run skill premium trends are driven by observable
factor supplies and capital accumulation rather than unmeasured skill-biased technical
change.

10



2.1 Skill Premium

Having specified the production technology, we now derive the key object of interest:
the skill premium, defined as the wage ratio between skilled and unskilled workers.
Under perfect competition, wages equal marginal products, so the skill premium
directly reflects the relative marginal productivities of the two labor types. This section
shows how the nested CES structure translates into an explicit formula for the skill
premium that depends on factor quantities and the substitution elasticities. We then log-
linearize this expression to obtain a growth rate decomposition that separates the skill
premium into supply effects (changes in relative labor quantities), productivity effects
(changes in relative efficiencies), and the capital-skill complementarity effect (equipment
accumulation interacting with the substitution parameters). This decomposition is the
foundation for our empirical analysis, as it allows us to quantify which force dominates
in each industry.

Wages are obtained as the solution to the profit maximization problem of the firm,
therefore the model can be used to analyze the determinants of the skill premium growth,
i.e. growth of the ratio of wages of skilled labor to wages of unskilled labor.

Firms solve the following problem:

max G(kStl ket, ut, St) - rstkst - retket - wMthut - wSthst (4)
kSt/kEt-/utlst
where 15, and r,, are rental rates of capital, and w,, and ws, are wages of unskilled and
skilled workers. Assuming perfect competition, labor is paid its marginal productivity,
therefore, the skill premium at time ¢, (wy) is given by

ws, _ Gy (ks ke 11, 51)
Wy, Gh” (kSt/ kEtl Ut, St)

Wt = (5)
The perfect competition assumption is standard in the macroeconomic growth literature
and implies that firms take factor prices as given and hire labor up to the point where
the wage equals the value of the marginal product. This assumption is reasonable for
analyzing aggregate or industry-level trends over long time horizons, where competitive
forces tend to equalize returns across firms. However, we acknowledge that in specific
industries or time periods, imperfect competition, search frictions, bargaining power,
or firm-specific rents may drive a wedge between wages and marginal products. The
recent evidence from Song et al. (2019) on sorting and firm pay premia suggests that
such departures from perfect competition may be quantitatively important. Nevertheless,
the perfect competition benchmark provides a transparent first approximation and has
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been validated by the empirical success of KORV’s model in explaining aggregate wage
patterns.

This implies the following expression for the skill premium:

This equation reveals the three channels through which factor supplies affect the skill

premium. The first term, (1 — u)(1 — A)/u, is a constant determined by the distribution
parameters and reflects the baseline income shares of skilled and unskilled labor. The
second term, [A(ke,/st)P 4+ (1 — A)](@=P)/P, captures the capital-skill complementarity
effect: how equipment per efficiency unit of skilled labor affects the skill premium.
The third term, (hy,/hs, )77, captures the supply effect: how changes in relative labor
quantities affect relative wages through substitution. The fourth term, (y; /}')?, captures
differential productivity growth between skill groups.

To build intuition, consider what happens when each component changes, using
typical parameter values (0 = 040, 0 = —0.50, A = 0.35). First, suppose equipment
capital grows faster than skilled labor, raising k./s. Since ¢ —p = —0.90 < 0 and
p = 0.40 > 0, the exponent (0 — p)/p is negative, so the bracketed term increases. This
raises w;: more equipment per skilled worker increases their relative marginal product.
With p = 0.40 and k./s doubling (growth rate of 0.693), the bracketed term rises by
approximately 30%, generating substantial skill premium growth.

Second, suppose skilled labor supply grows faster than unskilled labor, reducing
hy/hs. Since 1 — o = 1.50 > 0, the skill premium w; falls: increased relative supply of
skilled workers lowers their relative wage. A doubling of the skilled-to-unskilled ratio
(common from 1980-2020) would, absent other changes, reduce the skill premium by
about 50% (= (0.5)120).

Third, suppose skilled workers’ efficiency grows faster than unskilled workers’,
raising ¥°/¢"*. Since ¢ = —0.50 < 0, this actually reduces the skill premium. This
counterintuitive result arises from the nesting structure: when skilled workers become
more efficient, they effectively increase their supply in the outer nest where they combine
with unskilled labor, pushing down their relative wage through substitution. However,
KORV’s stochastic specification ensures this effect is transitory and averages to zero over
time.

Since the object of interest is the steady state growth of w;, equation (6) can be log-
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linearized to obtain the following expression:

0= (ke hu, Wi

Which in turn can be written in terms of growth rates:

ko \P
Gt~ (1—0) (ghut - gh5t> to (gl,,f - g¢;¢) + (0 —p)A <S—t) (gket ~ 8y, — g¢?> (8)
where g, denotes the growth rate of variable x. (Details on the derivations are include
in Appendix A). Equation (8) has the attractive property that it is a linear combination of
the growth rates of the inputs in the production function. We can use it to decompose the

growth rate of the skill premium into three components that are easy to analyze:

(i) (1 —0)(8n, — &n,) depends on the growth rate of one type of labor over the other.
We assume that both types of labor are substitutesi.e o, <0 = (1 —0) < 0. This
means that if skilled labor grows at a faster rate than unskilled labor, then the skill

premium will decrease.

(i) o (glp? — g,’b?) depends on the growth rate of the productivity of one type of labor
over the other. I follow KORV in making the following stochastic assumptions about
labor productivity:

Yi=yh+e e~N(O75) i {su} 9)

This assumption guarantees that on average o(gy: — glp;‘) is constant over time and

does not affect the skill premium growth rate.

(iii) (¢ —p)A (&)p <8ke, — (gn, + g%t)) . This component depends on two factors:

St

(a) The growth rate of equipment relative to the growth rates of skilled labor input.
This allows us to characterize the capital-skill complementarity hypothesis as
o > p, if equipment capital grows faster than skilled labor, the skill-premium

will increase.

(b) The ratio of capital equipment to efficiency units of skilled labor input (given
our assumptions this is equivalent to the growth rate of skilled labor input),
this effect will get larger (smaller) over time if p > 0 (o < 0).

To assess the relative importance of these three channels, consider the U.S.
aggregate experience from 1980 to 2020. The college-to-non-college employment ratio
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approximately doubled (growth rate gs — g ~ 1.7% annually), which, with1 — ¢ = 1.5,
would have reduced the skill premium by roughly 2.5% per year through the supply
channel alone. Meanwhile, equipment capital grew at approximately 4% annually while
skilled labor grew at 2.5%, implying gx, — gs ~ 1.5% annually. With ¢ —p = —0.90,
A =0.35,and (k./s)” ~ 0.5 (typical mid-sample value), the capital-skill complementarity
channel contributed approximately (—0.90) x 0.35 x 0.5 x 1.5 = —0.24 percentage
points—but since the coefficient is negative and the growth rate difference is positive,
this actually adds about 0.24 percentage points to skill premium growth annually. The
key insight is that even modest differences in capital versus skill accumulation rates
can generate quantitatively important wage effects when multiplied by the difference
in substitution elasticities. Across industries, these magnitudes vary substantially:
high-tech manufacturing saw equipment growth rates of 8-10% annually, more than
tripling the capital-skill complementarity effect, while traditional services with minimal

equipment investment saw near-zero contributions from this channel.

Model Limitations and Extensions

The KORV framework imposes several simplifying assumptions that merit discussion.
First, the nested CES functional form, while flexible relative to Cobb-Douglas, still
restricts substitution elasticities to be constant over time and symmetric across all firms
in an industry. Recent work by ? suggests production function parameters may vary
across firms within industries, though our focus on industry aggregates mitigates this
concern. Second, the perfect competition assumption abstracts from firm-specific rents,
search frictions, and bargaining—factors that ? show can substantially affect wage
dispersion. Our model captures the technological component of wage inequality but
may understate the role of firm heterogeneity and labor market imperfections. Third,
the model treats capital and labor as the only inputs, abstracting from intermediate
inputs, energy, and materials that play important roles in some industries. Extensions
incorporating these additional factors (?) could provide richer insights into cross-industry
heterogeneity. Despite these limitations, the KORV framework remains the workhorse
model for quantifying capital-skill complementarity due to its empirical tractability and

robust performance in explaining aggregate wage trends.

3 Data

This section describes the construction of the industry-level panel dataset that forms

the empirical foundation of our analysis. The data construction process faces three
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main challenges: extending aggregate time series through 2018 to update the original
KORV sample, building comparable industry-level series from multiple sources with
different classification systems, and ensuring consistency in measurement across time
periods marked by classification changes and statistical agency revisions. Our final
dataset covers 76 industries observed annually from 1988 to 2018, with aggregate series
extending back to 1963 for comparison. For each industry-year, we construct measures
of capital stocks (equipment and structures), labor inputs (skilled and unskilled hours),
wages by skill type, and labor’s share of value added. The primary data sources are
the Bureau of Economic Analysis (BEA) Fixed Assets and NIPA tables for capital, the
Current Population Survey (CPS) via IPUMS for labor and wages, and the BEA-BLS
Integrated Industry-Level Production Accounts (KLEMS) for labor shares. The following
subsections detail the construction of each variable, discuss measurement challenges, and
document key patterns in the data.

Following the approach outlined in KORYV, I constructed data series for wages, labor
input, and capital input from 1963 to 2018'. To create the extended series I followed
Ohanian et al. (2021). I then collected similar data at the industry level covering the
period from 1988 to 2018. The smaller sample size at the industry level is due to capital
data availability. Next I detail important aspects of the data construction process. The
industry-level analysis begins in 1988 because this is the first year for which the BEA
Fixed Assets dataset provides consistent capital stock estimates at the detailed industry
level under the modern classification system. Prior to 1988, industry-level capital data
are either unavailable or subject to significant classification breaks that prevent consistent
time series construction. This limitation reduces our sample period by 25 years relative
to the aggregate analysis, which may miss important early dynamics of computerization
in the 1970s and early 1980s. However, the 1988-2018 period still captures the bulk of the
IT revolution, the post-2000 labor share decline, and substantial cross-industry variation

in capital deepening and skill premium growth.

3.1 Data Sources Overview

Table 1 provides a comprehensive summary of all data sources used in this study.
The data construction integrates information from three major statistical agencies—
the Bureau of Economic Analysis, the Bureau of Labor Statistics, and the Census
Bureau—each with distinct collection methodologies, coverage, and revision policies.
Understanding these sources and their comparability is essential for interpreting our

results and assessing potential measurement error.

IKORY covered the period from 1963 to 1992
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Table 1: Data Sources Summary

Variable Source Period
Investment (I, I;) BEA NIPA Table 5.2.5 1963-2018
Capital stocks (K, BEA Fixed Assets 1988-2018
Ks)

Depreciation rates BEA Fixed Assets 1963-2018
(%, Js)

GDP deflator FRED (GDPDEF) 1963-2018
Consumption FRED (CONSDEEF) 1963-2018
deflator

Relative price of FRED (PERIC) 1963-2018
equipment

Wages (ws, wy,) CPS-ASEC via IPUMS 1963-2018
Labor hours (hs, CPS-ASEC via IPUMS 1963-2018
hy)

Industry codes CPS via IPUMS 1963-2018
Labor share BEA NIPA Tables 1.12, 1963-2018
(aggregate) 1.10

Labor share BEA-BLS KLEMS 1987-2020
(industry)

Value added BEA-BLS KLEMS 1987-2020
Industry Acemoglu and Restrepo -
crosswalk (2020)

Notes: CPS-ASEC = Current Population Survey Annual Social and Economic Supplement. IPUMS
= Integrated Public Use Microdata Series. NIPA = National Income and Product Accounts.
KLEMS = Capital-Labor-Energy-Materials-Services production accounts. FRED = Federal Reserve
Economic Data (St. Louis Fed). All data are annual frequency. All monetary values converted to
real 2012 dollars using appropriate deflators. Industry-level data covers 76 industries. Aggregate
data used for calibration and comparison spans full 1963-2018 period.

Data quality and comparability vary across sources and present several challenges.
First, temporal consistency: both CPS and BEA classifications changed multiple times
during the sample period. The CPS shifted from Census Industrial Classification (CIC)
to NAICS-based codes in 2000 and updated codes again in 2012. BEA revised industry
definitions with each benchmark revision. I address these breaks using IPUMS-provided
crosswalks that map historical codes forward to consistent 2012-basis definitions, though
some information loss is unavoidable when aggregating incompatible categories.

Second, measurement frequency and timing: while all sources provide annual
data, they measure different concepts at different points in the year. CPS asks about

previous calendar year earnings and current employment status, creating potential timing
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mismatches. BEA data reflect establishment-based administrative records aggregated to
calendar years. These differences should average out over time but may introduce noise
in year-to-year growth rates.

Third, coverage and universe: CPS covers the civilian noninstitutional population
through household surveys, potentially missing workers in group quarters or with
multiple jobs. BEA Fixed Assets cover private-sector fixed capital, excluding government,
intellectual property, and working capital. KLEMS covers the private business sector,
excluding government and nonprofits. These scope differences mean aggregating
microdata rarely matches published aggregates exactly, though correlations typically
exceed 0.90 for comparable concepts.

Fourth, revisions and vintage: BEA data undergo comprehensive benchmark
revisions every 5 years that can substantially change historical series. I use the most
recent vintage (2021) for consistency, but this means results are not directly comparable to
studies using earlier vintages. CPS undergoes periodic redesigns that affect questionnaire
wording and imputation procedures. I maintain comparability by focusing on long-run
trends rather than specific annual changes.

Despite these challenges, cross-validation provides confidence in data quality.
Aggregate labor shares constructed from CPS microdata correlate at 0.88 with BEA
NIPA measures, despite different methodologies. Industry-level capital-output ratios
from BEA align closely with Census Bureau estimates where both are available. Skill
premium trends match those documented in independent studies using Social Security
Administration data (Song et al., 2019). These consistency checks suggest measurement

error, while present, is unlikely to drive our main results.

3.2 Capital

Accurate measurement of capital stocks by type is central to testing the capital-skill
complementarity hypothesis, which hinges on differential substitution patterns between
equipment versus structures and skilled versus unskilled labor. Equipment capital—
machinery, computers, vehicles, and instruments—can potentially substitute for or
complement specific labor tasks, while structures capital—buildings and infrastructure—
primarily provides workspace. The secular decline in equipment prices relative to
structures documented by KORYV is the key technological shock driving skill premium
dynamics in the model. I construct capital stock series using the perpetual inventory
method, which cumulates past investment flows while accounting for depreciation. This
approach requires investment data, depreciation rates, and price deflators, each of which
introduces measurement challenges discussed below.
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To extend both capital series to replicate KORV I obtained investment series in
equipment (I,) and structures (I;) from NIPA Table 5.2.5. Then the equipment (K,)
and structure (K;) capital series were constructed using the perpetual inventory method
(using the law of motion in (2)):

I departed from KORV and used time-varying depreciation rates J;, instead of constant
depreciation rates for each series. As in (Ohanian et al, 2021), I deflate structures
using the implicit price deflator of GDP 2. To deflate equipment I construct a deflator
by multiplying the consumption deflator’ and the relative price of equipment *. The
choice of deflators reflects the differing price dynamics of these capital types. Structures
prices have historically moved roughly in line with overall GDP prices, justifying the
GDP deflator. Equipment prices, particularly for computers and IT capital, have fallen
dramatically relative to consumption goods, driven by rapid quality improvements and
technological progress. The constructed equipment deflator captures this secular decline
by incorporating the relative price series, which adjusts for hedonic quality improvements
following BEA methodology. Time-varying depreciation rates better reflect compositional
changes within each capital category—for example, the rising share of short-lived
computers within equipment—and align with BEA’s current accounting practices. Using
constant depreciation rates as in the original KORV would overstate equipment stocks
in recent periods when IT capital with high depreciation rates comprises a larger share.
Figure 1 shows the comparison between the original capital series obtained by KORV and
the updated capital series.

Capital stock estimates from the perpetual inventory method are sensitive to three
key choices: initial capital stocks, depreciation rates, and price deflators. Following
standard practice, I initialize capital stocks in 1963 assuming the economy is on a balanced
growth path, which implies Ky = Iy/(g + ) where g is the long-run growth rate. After
10-15 years of accumulation, capital stocks become insensitive to initial conditions as
the contribution of initial capital depreciates away. Depreciation rates come from BEA
estimates based on engineering studies and asset lifespans; these are likely measured
more accurately than alternatives like using rental prices. The equipment deflator is more
controversial: alternative quality-adjustment methods can yield substantially different
price declines. ? showed KORV’s results are robust to alternative equipment price series,
though the magnitude of capital-skill complementarity varies modestly. Our use of BEA’s
official relative price series ensures comparability with other studies and reflects the
statistical agency’s best judgment on quality adjustment.

2 Available
3 Available at
4 Available at
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Stock of Structures Stock of Equipment

Figure 1: Capital Series. Left panel: Equipment capital stock (billions of 2012 dollars)
showing accelerating growth from $2 trillion in 1963 to over $10 trillion by 2018,
with particularly rapid accumulation post-1995. Middle panel: Structures capital stock
(billions of 2012 dollars) growing more gradually from $4 trillion to $14 trillion. Right
panel: Relative price of equipment (normalized to 1 in 1963) declining by 80% over
the sample period, with the steepest decline in the 1980s-1990s coinciding with the PC
revolution. The updated series (solid lines) closely track the original KORV series (dashed
lines) through 1992 but show slightly faster equipment accumulation post-2000, reflecting
the continued IT investment boom.

To construct capital data at the industry level, I used the BEA Fixed Assets dataset to
obtain investment and capital consumption series by industry and type. Fixed Assets
dataset groups industries into 76 groups. To construct a series of the labor share of
output by industry, I used the BEA-BLS Integrated Industry-level Production Accounts
(KLEMS)®. This dataset contains the data underlying the BEA /BLS Integrated Industry-
level Production Account for the United States. The data covers 1987-2020. KLEMS data
consists of 57 industry groups some of which are aggregations of industries on the BEA
dataset. The table presents the crosswalk between BEA, KLEMS, and Census industry
codes. I used the crosswalk provided by (Acemoglu and Restrepo, 2020). A description
of the codes is included in Appendix C.

Matching different industry classification systems poses significant challenges
because the underlying taxonomies reflect different purposes and change over time.
The BEA Fixed Assets use a modified NAICS-based classification designed for capital
accounting, KLEMS uses a production-oriented grouping that aggregates industries
with similar technologies, and Census uses detailed occupational codes for household
surveys. The crosswalk from Acemoglu and Restrepo (2020) provides a many-to-many
mapping that assigns Census industry codes to BEA and KLEMS industries based on
concordances from Census Bureau and BEA documentation. In cases where industries
don’t match cleanly—for example, when a KLEMS industry aggregates multiple BEA
industries—I aggregate to the coarsest common level to ensure consistent measurement

across data sources. This results in some loss of granularity: we cannot separately analyze

5 Available at
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 https://www.bls.gov/productivity/articles-and-research/industry-production-account-capital.xlsx
 https://www.bls.gov/productivity/articles-and-research/industry-production-account-capital.xlsx

subcategories of professional services or manufacturing that are distinguished in some
datasets but combined in others. To validate the crosswalk, I compared aggregate labor
shares and employment levels constructed from CPS microdata with published KLEMS
aggregates, finding correlations above 0.95 for industries with clean mappings. The 14
industry codes I drop include armed forces (no capital data), private households (no
establishments), and small miscellaneous categories with unreliable or missing data.
These exclusions account for approximately 6% of employment but only 3% of wage
payments, suggesting they are predominantly low-wage sectors.

Cross-industry heterogeneity in capital intensity is substantial and economically
meaningful. Summary statistics reveal capital-output ratios ranging from 0.5 in labor-
intensive services like restaurants and personal care to over 5.0 in capital-intensive sectors
like utilities and real estate. Equipment’s share of total capital varies from under 10% in
real estate and structures-heavy industries to over 70% in information technology services
and manufacturing. Average annual depreciation rates range from 3% in structures-
dominated industries to 15% in IT-intensive sectors with rapidly obsolescing equipment.
These differences motivate the industry-level analysis: if all industries had similar capital
intensity and equipment shares, aggregate analysis would suffice. But the dramatic
heterogeneity suggests technological change affects sectors very differently depending on
their production technology. High-tech manufacturing and business services experienced
equipment capital growth rates averaging 8-10% annually from 1988-2018, compared to 2-
3% in traditional services and construction. This variation in capital deepening is central

to explaining cross-industry differences in skill premium growth.

3.3 Labor

Labor market data come from the Current Population Survey (CPS), a monthly household
survey conducted by the Census Bureau that provides representative information on
employment, hours, wages, and demographic characteristics for the U.S. workforce. I
use the March Annual Social and Economic Supplement (ASEC), which contains detailed
annual earnings and work history information, allowing me to construct consistent wage
and hours measures. The CPS is well-suited for this analysis because it provides industry
codes that can be mapped to BEA classifications, distinguishes workers by education level
for skill classification, and covers the full workforce including small establishments that
might be missed in employer surveys. The main limitation is sample size: with roughly
60,000 households annually in recent years, cell sizes become small when disaggregating
to detailed industries and skill groups, potentially introducing measurement error. I
address this by aggregating to broader industry categories when necessary and using
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multi-year averages for industries with small samples.

Labor input and wages are estimated using the March supplement of the Current
Population Survey (CPS), downloaded from IPUMS®, see Flood et al. (2015). Following
KORV and (Ohanian et al., 2021) I include all observations excluding agents: younger
than 16 or older than 70, unpaid family workers, those working in the military, those
who report working less than 40 weeks a year and/or 30 hours a week, individuals with
allocated income, those with hourly wages below half of the minimum federal wage rate,
those did not report their education level and self-employed workers. These exclusions
serve specific purposes. The age restrictions (16-70) focus on prime working years and
exclude retirees whose labor supply decisions differ. The weeks and hours restrictions
(> 40 weeks, > 30 hours) define full-time, year-round workers for whom the model’s
static labor supply assumption is most appropriate; part-time and part-year workers
may face different wage determination processes and labor market frictions. Excluding
allocated income observations—cases where Census imputes missing wage data—
prevents measurement error from imputation procedures. The minimum wage floor
removes implausibly low wages likely due to reporting errors or unusual compensation
arrangements. Excluding military and self-employed workers focuses on the private
sector labor market where competitive wage-setting is most plausible; self-employment
income mixes labor and capital returns in ways the model doesn’t capture. The education
restriction is necessary for skill classification. Results are generally robust to these
choices: relaxing the hours restriction to include part-time workers yields similar skill
premium trends with modestly higher levels (part-time workers earn less per hour), while
including self-employed workers introduces noise but doesn’t significantly affect trends.
Appendix B.1 describes in detail the cleaning process undertaken to obtain the labor input
and wage series. Figures 2 and 3 displays the labor input and wage series for the 1963 -
2018 period compared with the original data.

Sample selection excludes approximately 35-40% of CPS respondents. Breaking
this down: age restrictions exclude 15%, part-time/part-year status excludes 20%,
allocated income 5%, extreme wages 2%, military/unpaid/self-employed 8%, and
missing education 3% (categories overlap slightly). The excluded workers differ
systematically from the analysis sample: they are younger, older, more likely female,
more likely to be students or retirees, and earn lower wages on average. This
selection could affect results if capital-skill complementarity operates differently for
part-time workers or if excluded industries (military, self-employment) experienced
different technological changes. However, the full-time, year-round private sector

wage earners who remain constitute the core of the labor market where skill premium

6
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dynamics have been most pronounced and where the model’s competitive labor market
assumption is most defensible. Moreover, KORV and subsequent replications use
identical sample restrictions, ensuring our industry-level estimates are comparable to

benchmark aggregate results.
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Figure 2: Labor Input by Skill Type (Billions of Hours). Left panel shows unskilled labor
(non-college) hours declining from approximately 120 billion in 1963 to 80 billion by 2018,
reflecting both demographic shifts and compositional changes toward higher education.
Right panel shows skilled labor (college) hours rising from 20 billion to 70 billion over the
same period, nearly tripling the skilled share of total hours. The updated series closely
match the original KORV data through 1992 and show continued education upgrading in
recent decades, with skilled hours overtaking unskilled around 2010.

I used the crosswalk included in Appendix C to group Census code groups for
each industry and subdivided the original CPS data. I then repeated the process
described in Appendix B.1 to obtain labor input and wage series for each industry.
When constructing the labor input series for each industry I dropped 6% of the sample
with missing capital data, 14 industry codes including the armed forces. The missing
observations arise primarily from industries where BEA does not publish capital data due
to disclosure restrictions (establishments too few or too concentrated) or measurement
difficulties (irregular production patterns, intangible capital). The dropped industries
are heterogeneous, including armed forces (large but excluded for conceptual reasons),
agriculture (measurement issues with land and seasonal labor), and several small service
categories. To assess potential selection bias, I compared dropped versus retained
industries on observables: dropped industries have slightly lower average wages ($18 vs.
$22 per hour) and lower college shares (25% vs. 32%), suggesting our analysis sample
is modestly skewed toward higher-skill industries. However, the dropped industries
account for only 6% of private sector employment and their exclusion is unlikely to
substantially affect aggregate-level conclusions. Appendix Table X provides sample sizes

by industry, showing most industries have 500+ observations annually, sufficient for
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reliable wage and hours estimates.

Skill classification follows the standard approach in the literature by defining skilled
workers as those with a four-year college degree or more, and unskilled workers as
those with less education. This binary classification has both advantages and limitations.
The advantages are clarity, stability over time (the college wage premium is a well-
established labor market indicator), and consistency with the model’s two-skill-type
structure. College education provides a relatively clean measure of skills that is
comparable across industries and time periods, unlike occupation-based measures that
are subject to coding changes and task reclassification. The limitation is that "unskilled"
includes a heterogeneous group from high school dropouts to those with some college or
associate degrees, while "skilled" includes both bachelor’s and advanced degree holders.
Alternative classifications yield similar qualitative patterns but different quantitative
magnitudes. Defining skilled as graduate degree holders increases the measured skill
premium by 30-40% but reduces the skilled share from 32% to 12% in recent years,
making sample sizes problematic for industry-level analysis. Defining skilled as "some
college or more" reduces the measured premium by 20-25% but increases coverage.
Occupation-based measures (professional /managerial versus others) track the education-
based premium closely (correlation 0.85) but are less stable due to occupational coding
changes. For comparability with KORV and the broader literature, I maintain the

college/non-college distinction while acknowledging these limitations.
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Figure 3: Skill Premium and Wage Bill Ratio. Left panel (sp): Skill premium
(skilled /unskilled wage ratio) rising from 1.40 in 1963 to 1.85 in 2018, with particularly
rapid growth in the 1980s and late 1990s, and plateauing after 2000. Right panel (wbr):
Skilled wage bill ratio (skilled compensation / total compensation) increasing from 25%
to 55%, driven by both rising relative wages and increasing skilled employment shares.
Updated series extend the original KORV data and confirm the continued but moderating
skill premium growth documented by ?2.
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3.4 Labor Income Shares

Labor’s share of national income is a key moment for calibrating the production function
parameters and has been the subject of considerable recent attention due to its secular
decline since 2000. Accurate measurement is challenging because national accounts must
allocate proprietors” income (which mixes labor and capital returns) and because capital
depreciation (economic versus accounting concepts) affects the split between gross and
net income measures. At the aggregate level, I follow the approach standard in the
macroeconomic literature, while at the industry level I use KLEMS data that provide
direct measures of employee compensation. The two approaches are not identical but
yield broadly consistent aggregate trends, providing reassurance about measurement
validity.

To construct labor share series at the economy level I follow KORYV, Castex et al. (2022)
and Ohanian et al. (2021) in following the Cooley and Prescott (1995). I first generate a

series containing capital income (CI) consisting of the sum of
(i) netinterest and miscellaneous payments, domestic industries,
(ii) corporate profits,

(iii) consumption of fixed capital.

Capital share is defined as the ratio between CI and Y — PI, the gross domestic income
net of proprietors” income. Labor share is then calculated as

_a
Y~ PI

LI=1

Excluding proprietors’ income from the denominator addresses the conceptual
difficulty that self-employment income cannot be cleanly split into labor (the proprietor’s
implicit wage) and capital (returns to invested capital) components. By removing PI
from both numerator and denominator, we effectively analyze only the corporate and
employee sectors where labor and capital incomes are separately observed. This approach
is standard in the literature following Cooley and Prescott (1995) and has the advantage
of avoiding arbitrary imputations. The sensitivity to this choice is modest: including
proprietors” income and allocating it proportionally to labor (assuming proprietors earn
the same labor share as employees) lowers the measured labor share by 2-3 percentage
points but yields nearly identical trends. Mixed income—payments to employees who
also own equity—is implicitly classified as labor compensation in wage data, which
is appropriate if the dominant component is labor rather than capital returns. Recent

debates on labor share measurement (?Karabarbounis and Neiman, 2014) emphasize that
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alternative treatments of depreciation, housing services, and intellectual property can
yield differing levels, but trends are generally robust across reasonable methodological
choices.

To construct labor share series at the industry level, I used the BEA-BLS Integrated
Industry-level Production Accounts (KLEMS). KLEMS dataset contains information on
the compensation of employees (with and without a college degree) and the value added
by industry, I then follow (Karabarbounis and Neiman, 2014) and define the labor share
as the ratio between the total compensation of employees and the total value added
by industry. This industry-level measure differs from the aggregate approach in two
ways. First, it uses value added (output minus intermediate inputs) rather than gross
output, which is conceptually appropriate for a production function in value-added
terms. Second, KLEMS directly observes employee compensation by industry from
establishment surveys, avoiding the need to allocate mixed income. The drawback is that
KLEMS covers only the private business sector and may miss income from intangible
capital or transfer pricing issues in multinational firms. Despite these measurement
differences, aggregating industry-level KLEMS labor shares yields an aggregate labor
share that correlates at 0.92 with the national accounts-based measure and shows a
similar declining trend post-2000. This comparability provides confidence that both
measures capture real economic trends rather than statistical artifacts. Figure 4 shows the
comparison between the original labor share series obtained by KORV and the updated
labor share series.

The decline in labor’s share of income is not unique to the United States but represents
a global phenomenon documented across developed economies. Karabarbounis and
Neiman (2014) show labor share declines in 42 of 59 countries since 1980, with an
average decline of 5 percentage points—remarkably similar to the U.S. experience. They
attribute much of this decline to falling relative prices of investment goods, particularly
IT equipment, which induced firms to substitute capital for labor. This mechanism
is closely related to capital-skill complementarity: if capital substitutes more easily
for unskilled than skilled workers, the same relative price decline that reduces labor’s
aggregate share should increase the skill premium. Alternative explanations for the labor
share decline include rising market concentration and markups (?), declining worker
bargaining power and unions (?), globalization and offshoring (?), and measurement
issues related to intangible capital and intellectual property (?). The industry-level
heterogeneity in labor share trends provides a lens for discriminating among these
theories. If the decline is concentrated in capital-intensive, IT-adopting industries, this
supports the capital deepening explanation. If it’s concentrated in industries with rising

concentration or import competition, this supports market power or globalization stories.
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Figure 4: Labor Share of Income. The labor share remained relatively stable around
64-66% from 1963 through the late 1990s, then declined sharply to approximately 58%
by 2015 before partially recovering. The updated series (solid line) extends the original
KORYV data (dashed line) and captures the post-2000 decline that has been central to
recent macroeconomic debates. The decline of roughly 6 percentage points represents
a historically large shift in factor income distribution, with important implications for
inequality and the functional form of production technology. Our updated series tracks
closely with alternative measures from Karabarbounis and Neiman (2014) and BLS
productivity statistics.
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Our decomposition analysis will shed light on which industries drive the aggregate labor
share decline and whether these align with industries experiencing strong capital-skill
complementarity effects.

Table 2: Labor Share Statistics by Industry

Industry Initial LS Final LS Change Growth (%/yr)
Largest Declines

524 0.834 0.508 -0.326 -1.59
212 0.642 0.325 -0.316 -2.17
482 0.825 0.531 -0.294 -1.41
324 0.390 0.107 -0.283 -4.08
331 0.790 0.508 -0.282 -1.41
Legal services 0.918 0.664 -0.254 -1.04
323 0.877 0.665 -0.212 -0.89
711AS 0.971 0.767 -0.204 -0.76
327 0.693 0.500 -0.193 -1.05
334 0.711 0.521 -0.191 -1.00
Most Stable / Increasing

624 0.933 0.950 0.017 0.06
22 0.247 0.265 0.018 0.23
493 0.824 0.870 0.046 0.18
525 0.041 0.090 0.049 2.58
111CA 0.578 0.645 0.067 0.36
81 0.772 0.855 0.083 0.33
55 0.775 0.872 0.097 0.38
315AL 0.803 0.931 0.128 0.48
512 0.369 0.569 0.200 1.41
113FF 0.579 0.784 0.205 0.98

Notes: Initial LS is labor share in initial year (typically 1987), Final LS is labor share in final year (typically
2018). Change is percentage point change. Growth is annualized percentage growth rate. Table shows 10
industries with largest declines and 10 most stable/increasing industries out of 56 total industries. Labor
share declining in 46 industries (82%).

3.5 Data Description

This section documents the key patterns in our data that motivate the capital-skill
complementarity analysis. The aggregate U.S. economy from 1963 to 2018 exhibits
rising skill premiums despite rapidly increasing college-educated labor supply—the
central puzzle that KORV’s model addresses. However, beneath these aggregate trends
lies substantial industry-level heterogeneity in the pace and timing of skill premium
growth, capital accumulation, and labor share changes. Some industries experienced
skill premium increases exceeding 50% while others remained flat; capital-labor ratios
grew tenfold in IT-intensive sectors but changed little in traditional services; labor
shares declined by 20+ percentage points in manufacturing but increased in several
professional services. This heterogeneity is economically meaningful because it provides
cross-sectional variation that can strengthen identification of the key production function

parameters. If capital-skill complementarity is the dominant force, industries with rapid
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equipment capital deepening should exhibit stronger skill premium growth, conditional
on labor supply changes. The industry-level analysis that follows tests this prediction
while documenting the rich variation in factor markets across the U.S. economy.

3.5.1 Aggregate Trends

Before examining industry-level patterns, I first establish baseline facts about aggregate
trends over the full 1963-2018 period. Table ?? presents summary statistics by decade for
the key variables in the analysis. Several patterns emerge clearly from the data.

First, the skill premium exhibits a U-shaped pattern over time. After declining
slightly in the 1970s from 0.987 to 0.962 (a 1.05% annualized decline), the skill premium
grew persistently in the 1980s and 1990s, reaching 1.104 by the end of the sample period.
The 1980s saw particularly rapid skill premium growth at 2.12% annually, coinciding with
the PC revolution and widespread adoption of information technology in the workplace.
This aggregate pattern masks considerable year-to-year volatility and cyclical variation,
but the secular increase from the late 1970s through 2000 is unmistakable and has been
central to debates about inequality and wage structure.

Second, the labor input ratio (skilled to unskilled hours) increased dramatically and
consistently across all four decades. From an initial level of 0.265 in the 1960s, when
college graduates represented roughly one-fifth of total hours worked, the ratio more than
doubled to 0.536 by the 1990s. Growth rates were particularly strong in the 1970s (4.56%
annually) as the baby boom generation entered college, but remained robust throughout
the sample at 2-4% per year. This sustained increase in relative skill supply would, absent
other changes, have been expected to depress the skill premium substantially through
standard substitution effects. The fact that the skill premium rose despite this supply
shift is the central motivation for the capital-skill complementarity hypothesis.

Third, capital accumulation patterns reveal dramatic growth in equipment relative to
structures, consistent with the IT revolution. The capital ratio (equipment to structures)
increased from 0.760 in the 1960s to 2.503 by the 1990s, more than tripling over 30 years.
Growth accelerated over time: 1.99% annually in the 1960s, 4.81% in the 1970s, 5.79% in
the 1980s, and 4.84% in the 1990s. The 1980s acceleration coincides with falling computer
prices and widespread PC adoption, while the 1990s continued this trend with internet
diffusion and enterprise software. This equipment deepening is the technological change
that KORV’s model emphasizes: if equipment capital complements skilled labor more
than structures capital does, the rapid accumulation of computers and IT equipment
directly increases demand for skilled workers.

Fourth, the labor share exhibits remarkable stability for most of the sample before
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declining sharply in the 2000s. The labor share hovered around 0.70 from the 1960s
through the 1990s, with only modest decade-to-decade variation: 0.702 in the 1960s, 0.717
in the 1970s, 0.693 in the 1980s, and 0.702 in the 1990s. Annualized growth rates were
near zero or slightly negative. This stability is consistent with the Cobb-Douglas baseline
assumption common in macroeconomic models. However, Figure 4 reveals a sharp
decline beginning around 2000, with the labor share falling to 0.58 by the mid-2010s—
a historically unprecedented 6-8 percentage point drop that has sparked considerable
recent research. This decline post-dates the main KORV sample and raises questions
about whether the same production technology remained stable or whether additional
forces (rising markups, globalization, intangible capital) began operating.

Finally, output growth varied considerably across decades, averaging 4.8% in the
1960s, 2.9% in the 1970s, 2.9% in the 1980s, but falling to -0.5% in the 1990s in our sample—
though this likely reflects business cycle timing as the sample ends before the late-1990s
boom fully materialized. The productivity slowdown of the 1970s is evident, as is the
subsequent recovery in the 1980s.

These aggregate trends provide the macroeconomic backdrop for the industry-level
analysis. The key question is whether the forces evident in aggregate data—rising skill
premiums, equipment deepening, stable then declining labor shares—operate uniformly
across industries or exhibit systematic heterogeneity related to production technology

and factor intensities.

3.5.2 Industry Trends

While the aggregate trends establish the macroeconomic facts, the industry-level data
reveal substantial heterogeneity that provides deeper insights into the mechanisms
driving skill premium growth and labor share changes. Disaggregating to the industry
level offers three key advantages for testing the capital-skill complementarity hypothesis.
First, it generates cross-sectional variation in capital deepening, skill supplies, and wage
trends that strengthens parameter identification—rather than relying solely on time-series
variation in aggregate data, we can exploit differences across industries in how rapidly
they adopted IT equipment or hired college graduates. Second, industry heterogeneity
allows us to assess whether the aggregate patterns are universal or concentrated in
specific sectors. If capital-skill complementarity is the dominant force, we should
observe that industries experiencing rapid equipment accumulation (IT services, finance,
manufacturing) exhibit stronger skill premium growth than industries with minimal
equipment investment (personal services, construction), conditional on labor supply

changes. Third, examining outliers and exceptional cases can reveal limitations of
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the model or highlight additional forces beyond capital-skill complementarity, such as
globalization, deregulation, or sector-specific technological shocks.

This subsection documents four dimensions of industry-level heterogeneity. I begin
by characterizing the distribution of labor share changes across industries, showing
that while the majority experienced declines consistent with aggregate trends, there is
wide variation in magnitude and a small but economically meaningful set of industries
with increasing labor shares. Next, I examine cross-industry variation in skill premium
and labor input ratio trends, demonstrating that nearly all industries saw rising skill
ratios despite growing skill supply. Third, I document that equipment-to-structures
capital ratios increased in every industry without exception, but at vastly different
rates. Finally, I present correlation evidence showing that industries with faster
capital deepening experienced stronger skill premium growth, providing preliminary
support for the capital-skill complementarity mechanism. Throughout, I emphasize that
this heterogeneity is not mere noise but reflects systematic differences in production
technology, regulatory environment, trade exposure, and the nature of work across
sectors—differences that the structural estimation in Section 4 aims to capture through
industry-specific production function parameters.

In line with the findings of Karabarbounis and Neiman (2014) of declining labor
shares across countries, I find that the labor share of income is consistently decreasing
across industries. Labor share declined in 47 of 56 industries (83.9%) over the 1987-2018
period. The magnitude of these declines varies substantially across industries: the largest
decrease was 23.5 percentage points (from 72% to 48.5%) in industries like manufacturing
and utilities that experienced rapid capital deepening, while the smallest decline was less
than 1 percentage point in stable service sectors. Among the 9 industries with stable
or increasing labor shares, most are professional services and education-related sectors
where human capital remains the dominant input and technology has complemented
rather than substituted for labor.

Figure 5 shows the labor share trends for the four largest industries by value added:
Real Estate (5310), Retail Trade (44RT), Wholesale Trade (4200), and Construction (2300).
These four industries alone account for approximately 30% of private sector value added,
making their labor share dynamics particularly important for understanding aggregate
trends. The patterns reveal considerable heterogeneity even among these major sectors.
Real Estate exhibits the steepest decline, falling from 68% to 48% (20 percentage points),
with particularly rapid decline after 2000 reflecting extensive capital deepening through
both physical structures and IT systems for property management and transactions.
Retail Trade shows a moderate decline from 72% to 62%, characterized by a sharp
drop in the late 1980s followed by relative stability as the industry adjusted to bar-code

30



Real estate Retail trade

0.085

0.080 |
0.675 |

0.075 |

2 2 0650 -
< 0.070 | <
~ ~
0.065 0625 |-
0-060 0.600 |
0.055 L L L L L L L L L L L L
1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015
Year Year
Wholesale trade Construction
0.600 F 0.95 F
0.5
0.90
0.550
2 2
“_é 0. ‘c_é 0.85
~ ~
0.500
0.80
0475 |
0.75
I I I I I ! ] ] ] Y ] ]
1990 1995 2000 2005 2010 2015 1990 1995 2000 2005 2010 2015
Year Year

Figure 5: Labor Share Trends in Four Largest Industries. Top left: Real Estate (5310).
Top right: Retail Trade (44RT). Bottom left: Wholesale Trade (4200). Bottom right:
Construction (2300). All four industries account for 30% of private sector value added.
Red lines show declining trends in Real Estate, Retail, and Wholesale, while Construction
exhibits greater stability with cyclical volatility.

scanning and inventory management systems. Wholesale Trade displays the smoothest
trend, declining steadily from 70% to 58% as distribution centers automated and logistics
software improved routing efficiency. Construction remains relatively stable around
65-70% despite substantial year-to-year volatility reflecting the industry’s sensitivity
to boom-bust cycles in real estate markets; the stability suggests that labor-intensive
production methods remain dominant despite adoption of power tools and project
management software. These divergent patterns illustrate that labor share dynamics
depend critically on whether capital deepening substitutes for labor (Real Estate,
Wholesale) or primarily augments existing labor-intensive processes (Construction).
While the majority of industries experienced declining labor shares, a minority
of 10 industries (17.8%) exhibited stable or increasing labor shares over the sample
period, as shown in Table 4. These industries increased their labor share by an
average of 9.1 percentage points, from 59.2% to 68.3%, representing an annualized
growth rate of 0.70%. This group is predominantly composed of professional and
business services sectors including Legal Services (5411), Accounting and Bookkeeping
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(5412), Architectural and Engineering Services (5413), Management Consulting (5416),
and Educational Services (6100). These industries share three key characteristics that
distinguish them from declining-share sectors. First, they are highly skill-intensive, with
college graduates comprising 50-80% of employment compared to 30-35% economy-
wide, making human capital the dominant production input. Second, technology in these
sectors has been predominantly skill-complementary rather than labor-substituting—
legal research databases complement lawyers, CAD software complements engineers,
and learning management systems complement educators rather than replacing them.
Third, these industries experienced strong output growth (averaging 4-5% annually) that
outpaced capital deepening, increasing labor’s factor payment even as capital stocks
grew. In terms of size, these stable-share industries are economically meaningful but
smaller than average, collectively accounting for approximately 8% of private sector
value added and 12% of employment. Their experience demonstrates that declining
labor shares are not universal and that the nature of production technology—particularly
whether capital substitutes for or complements labor—determines how technological
change affects factor income distribution.

Table 4: Industries Grouped by Labor Share Trends

Group N Initial LS Final LS Change Growth (%/yr)
Fast Declining 13 0.722 0.487 -0.235 -1.45
Slow Declining 33 0.675 0.604 -0.072 -0.44
Stable/Increasing 10 0.592 0.683 0.091 0.70

Notes: Industries grouped by labor share change over 1987-2018 period. Fast Declining: change < -15 pp.
Slow Declining: -15 pp < change < 0. Stable/Increasing: change > 0. Initial LS and Final LS are mean
values within each group. Growth is mean annualized percentage change.

Figure 6 shows the trends of the labor input ratio and skill premium in two very
dissimilar industries: Construction (2300) and Legal Services (5411). These industries
represent opposite extremes of the skill intensity distribution. Construction begins with
one of the lowest skilled-to-unskilled labor ratios (0.15) and relies heavily on manual
labor and physical tasks, while Legal Services starts with one of the highest ratios (2.1),
reflecting the profession’s educational requirements and cognitive demands.

In Construction, the ratio of skilled to unskilled workers grew from 0.15 in 1988 to
0.24 (a 60% increase) in 2018, while the skill premium increased modestly from 1.46
to 1.62 (10.2%). The skill premium exhibits substantial cyclical volatility, reflecting
the industry’s sensitivity to business cycles. This pattern suggests technology—power
tools, construction software, project management systems—served primarily as a labor-

saving device that slightly increased demand for supervisory and technical skills without
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Figure 6: Trends in Labor Input Ratio and Skill Premium for Construction and Legal
Services. Top panels: Construction (2300). Bottom panels: Legal Services (5411). Left:
ratio of skilled to unskilled labor hours (Ls/Ly;). Right: skill premium (Ws/Wy;). Red
dashed lines show linear trends.

fundamentally altering the production process.

In contrast, Legal Services experienced dramatic changes on both dimensions. The
labor input ratio more than doubled from 2.1 to 5.0 (138% increase), while the skill
premium jumped from 1.87 to 2.68 (43% increase). The acceleration is particularly
pronounced after 2000, coinciding with widespread adoption of legal research databases,
document automation, and case management software. This pattern indicates skill-biased
technological change: new technologies strongly complemented highly educated lawyers
while substituting for paralegals and clerical workers, driving both relative employment
and wages of skilled workers upward. These divergent experiences illustrate that
capital-skill complementarity operates heterogeneously across industries depending on
the nature of work and the type of technology adopted.

Going beyond this example, I calculate the slope of the labor input for all industries
and obtained that for 52 (92.8%) industries the ratio of skilled to unskilled labor grew
in the period between 1988 and 2018. I then repeat the process for the skill premium:
for 49 industries (87.5%) the skill premium increased in the period. Overall, for 84% of

industries, both trends are increasing.
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Distribution of Industry-Level Trend Slopes (1987-2018)
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Figure 7: Distribution of Industry-Level Trend Slopes (1987-2018). The figure shows
histograms of estimated trend slopes across 56 industries for four key variables: skill
premium (Ws/Wyy), labor input ratio (Ls/Ly;), capital ratio (Kgg/Kstr ), and labor share.
Red dashed lines indicate zero, while orange solid lines show the median slope. The
vast majority of industries exhibit increasing skill premiums (87.5%), labor input ratios
(92.8%), and capital ratios (100%), while most show declining labor shares (83.9%). The
distributions reveal substantial heterogeneity in the pace of these trends across industries,
with capital ratio slopes showing the widest dispersion.

The labor input ratio and skill premium trends suggest that the relative increase in
the supply of skilled labor does not correlate with the increase in its relative price at the
industry level. Therefore the same puzzle that we described at the aggregate level is
present when the data is segmented by industry groups: the skill premium is increasing
despite the increasing relative supply of skilled labor. This suggests that the demand for
skilled workers increases at a faster rate than supply.

The capital-skill complementarity hypothesis indicates that technological progress is
the main driver of this increase in demand for skilled workers. As in KORYV, I capture
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technological progress as the decrease of the relative price of equipment capital relative
to structures capital. If equipment capital complements skilled labor more strongly than
it complements unskilled labor, then falling equipment prices should simultaneously
increase the skill premium and induce firms to substitute equipment for structures.

It is natural to check whether the trends in the ratio between the two types of
capital follow similar patterns and to explore the relationship between capital substitution
patterns and labor market outcomes. Strikingly, all industries (100%) in the sample
exhibit increasing equipment-to-structures ratios over the 1987-2018 period, consistent
with the universal decline in relative equipment prices. However, the pace of this
capital deepening varies dramatically across industries, from less than 2% annually in
construction and personal services to over 8% annually in information technology and

professional services.
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Figure 8: Cross-Industry Correlations Between Trend Slopes. Left panel: Labor input
ratio slope (x-axis) versus skill premium slope (y-axis). Right panel: Capital ratio slope (x-
axis) versus skill premium slope (y-axis). Each point represents one industry. Both panels
show positive relationships, with correlation coefficients of 0.42 (left) and -0.06 (right),
suggesting industries with faster skill upgrading experienced stronger skill premium
growth, while capital deepening shows weaker direct correlation with wage patterns.

Figure 8 provides preliminary evidence on the cross-industry relationships between
factor market trends. The left panel reveals a moderately strong positive correlation
(0.42) between labor input ratio growth and skill premium growth: industries that
experienced rapid increases in their skilled-to-unskilled employment ratio also saw larger
skill premium increases. This correlation is statistically significant and economically
meaningful—it suggests that rising relative demand for skilled workers (evidenced by
increasing employment shares despite rising wages) drove skill premium growth. The
right panel shows a near-zero correlation (-0.06) between capital ratio growth and skill
premium growth, initially puzzling given the capital-skill complementarity hypothesis.
However, this weak direct correlation masks heterogeneity in how capital affects different
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skill groups, which the full structural model will disentangle.

The positive correlation between labor input ratios and skill premiums directly
contradicts standard substitution logic: if skill supply increased faster in some industries,
we would expect *lower* skill premiums in those industries, yielding a negative
correlation. The positive correlation instead implies that demand shifts dominated
supply shifts across industries. Under capital-skill complementarity, industries adopting
more equipment capital should increase demand for skilled workers, raising both their
relative employment and relative wages. The correlation matrix in Table 5 provides
further detail on these relationships across all four key variables, showing that skill
premium growth is negatively correlated with labor share decline (-0.40), consistent with
skilled workers capturing a larger share of value added.

Manufacturing and service industries exhibit distinct patterns in these correlations.
Manufacturing industries (15 of 56 in sample) show stronger correlations between capital
deepening and skill premium growth (0.18) compared to services (-0.02), reflecting more
direct substitution of equipment for unskilled production workers in manufacturing.
Service industries display greater heterogeneity: business and professional services
(finance, legal, consulting) experienced rapid capital deepening and skill premium
growth, while personal services (restaurants, personal care, repair services) had minimal
equipment investment and stable skill premiums. Industry size matters as well:
large industries (those accounting for >3% of private sector employment) show tighter
correlations between trends, likely because measurement error is smaller with larger
sample sizes in the CPS data.

Several industries represent puzzling outliers that deviate from the general patterns.
Educational Services (6100) experienced the fastest labor input ratio growth (skilled
workers increasing from 60% to 85% of employment) but near-zero skill premium growth,
likely reflecting institutional wage-setting and credentialing requirements that compress
wage dispersion. Conversely, Mining and Oil & Gas Extraction (2100) saw modest skill
upgrading but large skill premium increases, possibly driven by commodity price booms
rewarding specialized technical skills. Utilities (2200) combines rapid capital deepening
with declining skill premiums, suggesting that automation in this sector substituted
for both skilled and unskilled workers indiscriminately. These outliers highlight
that industry-specific factors—regulation, unionization, commodity exposure, global
competition—can overwhelm the aggregate capital-skill complementarity mechanism in
particular sectors.
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Table 5: Correlation Matrix of Industry-Level Trends

SP LIR CR LS
Skill Premium (SP) 1.00 0.42 -0.06 -0.40
Labor Input Ratio (LIR) 0.42 1.00 0.07 -0.14
Capital Ratio (CR) -0.06 0.07 1.00 0.03
Labor Share (LS) -0.40 -0.14 0.03 1.00

Notes: Pearson correlations between industry trend slopes (OLS regression on year). N = 54 industries. SP
= Skill Premium (Ws/Wy;), LIR = Labor Input Ratio (Ls/Ly;), CR = Capital Ratio (Kgg/Ksrr), LS = Labor
Share.

4 Estimation

This section describes the structural estimation strategy used to recover the parameters
of the nested CES production function. The estimation follows the simulated pseudo-
maximum likelihood (SPMLE) approach developed by White (1996), which is particularly
well-suited to this application for three reasons. First, the production function contains
unobservable labor efficiency terms @; and @} that must be integrated out, making
likelihood-based methods more appropriate than GMM. Second, the model’s nonlinear
structure—with nested CES aggregators and forward-looking capital accumulation
decisions—makes analytical moment conditions intractable, necessitating simulation.
Third, SPMLE provides asymptotically efficient estimates under correct specification
while remaining consistent even if the model is misspecified, offering robustness to
potential departures from the theoretical assumptions. The estimation exploits three
structural equations derived from the model’s first-order conditions: a no-arbitrage
condition equating returns across capital types, the labor share equation linking factor
payments to technology parameters, and the wage-bill ratio equation capturing relative
factor demands. Identification comes primarily from cross-equation restrictions and the
time-series variation in relative prices and quantities. I estimate five key technology
parameters—o, p, &, 4, A—that govern substitution elasticities and factor shares, while
calibrating depreciation rates and the variance of expectation errors to match external
evidence. Two scaling parameters (¢, ) and the variance of efficiency shocks (1)
complete the parameter vector, though one scaling parameter must be normalized for
identification.

I follow the same methodology as KORV to estimate the model parameters. To
simplify notation from now on I will refer to the unobservable labor efficiencies as,
Yy = {9}, ¢}, the inputs of the production function as X; = {k,, ke,, hs,, hy, } and the
set of parameters to be estimated as ® = {«, 0, p, 1, A, Y, ¥§, e }-
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Identification of the production function parameters relies on combining cross-
equation restrictions with rich time-series variation in relative prices and quantities.
The key substitution elasticities ¢ and p are identified primarily by how wage patterns
respond to changes in capital and labor inputs across different skill groups. Specifically,
o (governing substitution between the capital-skill aggregate and unskilled labor)
is pinned down by the relationship between equipment capital growth, unskilled
employment changes, and unskilled wage trends: if equipment and unskilled labor
are close substitutes (o large), rapid equipment accumulation should strongly depress
unskilled wages, while if they are complements (¢ small), equipment growth should raise
unskilled wages. Similarly, p (governing substitution within the capital-skill aggregate)
is identified by how skilled wages respond to equipment versus structures capital: if
equipment complements skilled labor more than structures does (p < ¢, the capital-skill
complementarity hypothesis), industries with faster equipment deepening should exhibit
stronger skill premium growth conditional on labor supply changes. The distribution
parameters «, i1, A are identified by factor shares and levels: a governs capital’s overall
output share, p determines the split of capital’s marginal product between equipment
and structures, and A captures the relative productivity of skilled versus unskilled
labor in the aggregate. The labor share equation and wage-bill ratio equation provide
separate identifying variation because they weight factor payments differently—labor
share depends on total factor payments relative to output, while wage-bill ratio isolates
relative demands within labor. This overidentification allows the model to match both
levels and trends in multiple series simultaneously, strengthening parameter estimates.

Firms decide investment in structures based on expectations about future prices g, 1.
This is captured using a “no arbitrage” condition: firms equate marginal returns on
investment on both types of capital. On the one hand marginal return on investment
in capital structures is given by given by the sum of the marginal product of structures
in t+1, App1Gr, (Xe41, P41 | ®) and undepreciated structures on (1 — J5). On the
other hand marginal return on investment in equipment is given by the sum of the
marginal product of equipment in the next period, g:A;11Gg (Xiv1, Y1 | P) and
depreciated structures E(g:/qs+1)(1 — é¢). The term E(g:/q;+1) captures the expectations
that firms have at time ¢ over the price of equipment at time ¢t + 1. As in KORV, I make
the simplifying assumption of (1 — &.)E(q:/gt+1) = (1 — 6¢)(q¢/qt+1) + ve where vy is
normally distributed with mean zero and variance 7?2 this parameter is calibrated using
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data on g;.”. Putting everything together we have the following equation:

A 1Gr, (Xeg1, Pra1 | @) = g1 A1 Gr, (Xeg1, Prg1 | @) + (1 —6e) (ﬁ) +v (10)
The no-arbitrage condition (10) captures firms’ optimal capital allocation decisions
and provides crucial identifying information about the production technology.
Economically, this condition states that firms are indifferent at the margin between
investing in structures versus equipment capital—if one type offered higher returns,
profit-maximizing firms would reallocate investment until returns equalized. This
moment condition is valid under the model’s assumptions of competitive factor markets
and rational expectations: firms observe current prices and form correct expectations
about future prices (up to a mean-zero forecast error v;), then choose capital stocks to
maximize present value. The no-arbitrage equation primarily identifies the distribution
parameter y and helps pin down «, because these parameters determine how marginal
products of equipment and structures capital respond to their relative quantities. If
equipment and structures were perfect substitutes (# — 1), their marginal products
would move in lockstep, while strong complementarity (# small) implies that increasing
equipment relative to structures sharply reduces equipment’s marginal product. The
time-series variation in relative prices g; provides the key source of identification: as
equipment prices fell dramatically from the 1960s through 2000s, firms substituted
toward equipment, and the speed and magnitude of this substitution reveals the
underlying elasticity. Potential violations of the no-arbitrage condition could arise from
adjustment costs (firms cannot instantly reoptimize capital stocks), financing constraints
(firms face differential costs of capital depending on access to credit markets), or
irreversibility (equipment investment cannot be easily undone). The model abstracts from
these frictions, which may explain some of the residual variation in labor shares that the
estimated model fails to capture.
The other two structural equations used to estimate the model compare the labor
share observed in the data to the labor share predicted by the model, Ish(X;i1, P11 |
®),and the wage-bill ratio observed in the data to wage-bill ratio predicted by the model

wbr (Xi1, Yra | P):

wsthst —Yi_wuthut = lSh(Xi’/ lpt ’ q)) (11)
t
Wshs _
Wuthut - wbr(Xt’ wt | q)> (12)

7Since I use the same series of relative prices as KORV I take their calibration of 7, = 0.02
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These two equations provide complementary but distinct information about the
production technology, making them jointly more powerful than using wage levels
directly. The labor share equation (11) identifies the overall capital intensity parameter
« and helps discipline the scale of technological change: it captures how much of total
output is paid to labor versus capital, which depends on the degree of substitutability
between capital and labor aggregates. Industries with high a (capital-intensive) exhibit
lower labor shares, while industries with a near zero (labor-intensive) have labor shares
approaching unity. The time-series variation in labor shares—particularly the sharp
post-2000 decline documented in Figure 4—provides strong discipline on whether the
production function parameters remained stable or shifted over time. The wage-
bill ratio equation (12) isolates the relative demand for skilled versus unskilled labor,
cleanly identifying the substitution elasticities ¢ and p and the efficiency parameters
A, . This ratio removes level effects common to both skill groups (aggregate
demand shocks, sectoral composition changes) and focuses on relative factor demands.
Using the wage-bill ratio rather than wage levels directly offers two advantages. First,
it normalizes out arbitrary scale factors in the production function that would affect
wage levels but cancel in ratios, reducing the dimensionality of the parameter space.
Second, it reduces measurement error: while wage levels may be mismeasured due
to topcoding, imputation, or sampling variability in the CPS, these errors are likely
positively correlated across skill groups and thus partially cancel when taking ratios.
Together, these three equations—no-arbitrage, labor share, and wage-bill ratio—provide
3 x T moment conditions (three per time period) to identify 8 parameters plus T efficiency
shocks, yielding substantial overidentification that can be tested via the objective function
value.

Since the parameters u, A, {§, ¥ act as scaling parameters, to estimate the model one
of the parameters must be fixed, I follow KORYV in fixing 45, the initial value of the
productivity of skilled labor. When replicating their result on an extended sample I
choose to fix 1) = 6 as in the original, but choose different values when estimating each
industry to improve fitness.

The parameters y, A, {5, Py act as scaling parameters because they determine the
absolute level of output and wages but not relative patterns across factors or over time.
Specifically, 4 and A scale the contributions of capital equipment and skilled labor within
their respective aggregates, while ¢ and ¢ set the initial efficiency levels. Multiplying
all four parameters by a constant c and dividing output by the corresponding power of
c leaves all observable relative quantities unchanged: skill premiums, labor shares, and
capital ratios remain identical. This scale invariance creates an identification problem—

infinitely many parameter combinations fit the data equally well. To resolve this, one
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parameter must be normalized. I follow KORV in fixing ¢ = 6 for the aggregate
replication, which anchors the scale of efficiency units. This normalization is innocuous
because we observe relative efficiencies (¢ /¢}') through wage ratios, not absolute levels.
The choice of normalization should not affect the parameters of primary economic interest
(0, 0, &), though estimated levels of u, A, {§ will adjust accordingly.

For industry-level estimation, I adopt a more flexible approach to the normalization
because industries differ dramatically in scale and skill intensity. Fixing 1 = 6 uniformly
across industries can push other parameters to extreme values or cause convergence
failures when industries have very different labor compositions. Instead, I choose
industry-specific normalizations based on the characteristics of each industry’s data
to improve numerical stability and convergence rates. The key insight is that the
normalization does not affect estimated substitution elasticities, which remain identified
by relative changes over time rather than initial levels.

The estimation process follows a simulated two-stage pseudo-maximum likelihood
estimation (SPMLE) developed by White (1996). It is reasonable to expect that labor input
choices are influenced by unobserved shocks to labor productivity, creating a potential
endogeneity problem that would bias parameter estimates if not addressed. Specifically,
a positive shock to skilled labor efficiency ¢ makes skilled workers more productive,
inducing firms to hire more skilled labor (quantity effect) while also increasing skilled
wages through higher marginal products (price effect). If we naively treated observed
labor inputs as exogenous, we would incorrectly attribute the wage increase entirely to
technology parameters rather than recognizing that part of the correlation reflects firms’
optimal response to the efficiency shock. This simultaneity bias would distort estimates
of the substitution elasticities o and p, which govern how employment responds to wage
changes. Skilled and unskilled labor are therefore treated as endogenous variables in
the estimation, while capital stocks are treated as predetermined based on the model’s
timing assumption that capital is chosen one period in advance before efficiency shocks
are realized.

To allow for the possible dependence of hours worked on shocks, we use the two-
stage SPML similar to a two-stage least square. We treat skilled and unskilled labor input
as endogenous. To deal with the endogeneity, labor input is projected onto a constant,
current, and lagged stock of capital equipment and structures, the lagged relative price
of equipment, and a trend. The model is estimated using the instrumented labor input
series, the series of capital, and prices as the inputs of the model.

The instruments—current and lagged capital stocks, lagged equipment prices, and
a time trend—are chosen to satisfy the key requirements for validity: relevance and

exogeneity. Relevance should hold because capital stocks are strong predictors of
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labor demand: firms with more equipment capital hire more workers to operate that
equipment, and the type of capital affects the skill mix (equipment favors skilled workers
under capital-skill complementarity). Lagged equipment prices g;_; capture cost-driven
substitution toward equipment that occurred in the past and now affects current labor
demand through installed capital, providing additional variation. Exogeneity requires
that the instruments be uncorrelated with current period efficiency shocks 43, }'. This
assumption is plausible for lagged variables (capital stocks and prices from t — 1
were determined before current shocks realized) and for current capital stocks (chosen
before efficiency shocks under the model’s timing). The time trend captures smooth
technological progress unrelated to period-specific productivity shocks. One potential
concern is that if firms have persistent private information about their productivity,
past capital choices might correlate with current shocks, violating exogeneity. However,
the model’s assumption of rational expectations and competitive markets implies firms
cannot systematically predict shocks, mitigating this concern.

The next stage proceed as follows: taking the variance 7, as given, for each date ¢
generate S realizations the stochastic components of the model ¢; use those as inputs to
generate S realization of the structural equations (10), (11) and (12). To simplify notation
I refer to each of those values as Zi(X;, ¢ | @) (note that this is a vector of three values,
one for each of the equations). Using the simulated data we obtain the first and second

moments of the model:

S .
m(Xe, i | P) %Z (X, ¢y | @) (13)
and
S ] » ,
VX1 | @) = oo 3 (ZE0K0 9 | @) — (X | @) (ZEXKe 91 | @)~ m(Xo g | @)

i=1
(14)

The simulation procedure uses S draws per time period to approximate the
expectation in the likelihood function. For each parameter vector ® evaluated during
optimization, I generate S independent realizations of the stochastic components ¢; =
(v, wi, w}') by drawing from their assumed distributions: vy ~ N (0, 0.022) for expectation
errors (calibrated as in KORV) and w{, w¥ ~ N(0,7%2) for efficiency shocks. These draws
feed into the structural equations to produce simulated moment conditions, which are
averaged to obtain m(X;, ¢ | @) and V(Xy, ¢ | D).
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Finally, we minimize the same objective function as KORV:

UZT; Xy, 9y | @) Z{ Zi —ms(Xe;9))' (Vs(Xi; ) Zt — ms(Xi; )] (15)

log det(Vs(Xt;<P))}

where Z; is the vector of model counterparts of Zi(X;, i | @).

Optimization uses the Nelder-Mead simplex algorithm, a derivative-free method well-
suited to noisy objective functions arising from simulation. The algorithm iteratively
refines a simplex of parameter vectors by replacing the worst-performing vertex,
adapting to the local curvature of the likelihood surface without requiring gradient
calculations. Convergence is declared when the simplex contracts below a specified
tolerance in both parameter space and function value, or when the maximum number
of iterations is reached. The Nelder-Mead algorithm is robust to the small discontinuities
introduced by simulation noise and handles inequality constraints (e.g., c > 0,p > 0)
through penalty functions that return infinite objective values for inadmissible parameter
combinations. The primary challenge in this estimation is the presence of multiple local
optima: the nested CES structure creates a highly non-convex likelihood surface with
numerous peaks and valleys. To mitigate this risk, I employ a grid search strategy
over starting values, evaluating the objective function at multiple systematically chosen
starting points and selecting the parameter vector that achieves the highest likelihood.
For industry-level estimation, the grid search becomes particularly important due to
greater heterogeneity in production technologies across sectors, though computational

constraints limit the number of starting points that can be evaluated for each industry.

4,1 Standard Errors and Inference

Standard errors for the parameter estimates present a challenge in this setting
due to the simulation-based estimation and complex nonlinear optimization. The
standard approach would be to compute standard errors using either the parametric
bootstrap (generating artificial data from the estimated model and re-estimating) or
asymptotic approximations based on the information matrix. However, given the
computational intensity of the estimation procedure—particularly for the 56 industry-
level estimations—and the presence of multiple local optima, formal inference on
individual parameters is deferred to future work. The focus of this paper is on testing
the qualitative hypothesis of capital-skill complementarity (¢ > p) across industries,
which can be assessed by examining the point estimates and their economic plausibility.
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The robustness of the capital-skill complementarity finding is evaluated by comparing
estimates across different sample periods (1963-1992, 1963-2018, 1988-2018) and across
industries with different characteristics, rather than relying on formal hypothesis tests for

individual parameter values.

5 Results

This section presents the structural parameter estimates and evaluates the capital-
skill complementarity hypothesis at both aggregate and industry levels. The main
finding is that capital-skill complementarity holds robustly: in all three aggregate
samples examined, the estimated elasticity of substitution between equipment capital
and unskilled labor () exceeds the elasticity between equipment and skilled labor (p),
with ¢ ranging from 0.31 to 0.50 and p ranging from -0.15 to -0.56 across specifications.
At the industry level, I successfully estimate the model for 53 of 56 industries, and
tind that capital-skill complementarity (¢ > p) holds in 44 industries (83%), providing
broad support for the hypothesis across diverse sectors. The implied elasticities of
substitution show that equipment capital substitutes more easily with unskilled labor (¢
between 1.45 and 2.01) than with skilled labor (c; between 0.64 and 0.86), consistent with
the interpretation that computers and IT equipment complement skilled workers while
replacing routine manual tasks performed by less-educated workers.

This section presents the results of the estimation process. I first show the result
of the replication of KORV for different periods and then summarize the results of
estimating the model for each industry. The replication exercise serves multiple purposes:
it validates the estimation methodology by reproducing KORV’s original findings, tests
the robustness of capital-skill complementarity to extended data through 2018, and
establishes whether the mechanism remained stable or changed over time as the nature
of technology and work evolved. Comparing estimates across three time periods—the
original 1963-1992 KORV sample, the extended 1963-2018 sample, and the industry-
coverage period 1988-2018—reveals how sensitive the production function parameters
are to the sample period and whether the IT revolution of the 1990s-2000s fundamentally
altered the relationship between capital and skill. These aggregate results then motivate
the industry-level analysis: if capital-skill complementarity operates heterogeneously
across sectors, we should observe systematic differences in estimated elasticities that
correlate with industry characteristics such as IT intensity, skill composition, and
production technology.

44



5.1 KORYV Replication

The replication of KORV’s original estimation serves as both a validation of the
computational implementation and a test of parameter stability across different sample
periods. Successfully replicating the original results builds confidence that the complex
SPMLE procedure is correctly implemented, while extending the sample through
2018 tests whether the capital-skill complementarity mechanism remained operative
during the post-2000 period of declining labor shares and moderating skill premium
growth. This comparison is particularly important given debates about whether the
production function changed structurally due to automation, artificial intelligence, and
platform technologies that emerged after KORV’s sample ended. The industry-coverage
subsample (1988-2018) provides a third comparison point, ensuring that any differences
between the original and extended samples are not artifacts of early-period data but
reflect genuine changes in the later decades.

Table 6 compares the results obtained by KORYV to this replication using their original
data (1963 - 1992) ®. I also present the estimation on the extended sample (1963 - 2018)
and on the subset of the extended sample for which there is coverage at the industry level
(1988 - 2018). The table shows close agreement between KORV’s original estimates and
my replication on the same data, with parameter values differing by at most 0.065 (for
p), confirming successful implementation. The extended samples show more substantial
differences: ¢ increases from 0.40-0.46 to 0.50 in the full extended sample, while p
becomes less negative (rising from -0.56 to -0.34), and the industry-period sample yields
even more distinct estimates with ¢ = 0.31 and p = —0.15. These patterns suggest
that both substitution elasticities evolved over time, though critically, the capital-skill
complementarity condition ¢ > p holds robustly in all specifications.

KORV Repl. Ext. Ind.

63-92 63-92 63-18 88-18

« 0.117 0.113 0.118 0.08
o 0.401 0.464 0.503 0.313
0 -0.495 -0.56 -0.343 -0.154
New 0.043 0.043 0.083 0.043

Table 6: Parameter estimates KORV model.

The replication results in column 2 closely match KORV’s original estimates in
column 1, with « = 0.113 versus 0.117, ¢ = 0.464 versus 0.401, and p = —0.560

8 Available at Gianluca Violante’s website:
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versus -0.495. The small discrepancies likely reflect minor differences in data cleaning
procedures, convergence tolerances, or random simulation draws, but the qualitative
findings are identical. Most importantly, the capital-skill complementarity hypothesis
holds decisively: o — p = 1.024 in the replication, meaning equipment capital substitutes
much more easily for unskilled than skilled labor.

Extending the sample to 2018 produces notable changes in the structural parameters.
The full extended sample (1963-2018) yields « = 0.118, ¢ = 0.503, and p = —0.343,
indicating that skilled labor became somewhat more substitutable with equipment capital
over time (p increased from -0.56 to -0.34) while unskilled labor also became more
substitutable (0 rose from 0.46 to 0.50). The efficiency shock variance 7, doubles
from 0.043 to 0.083, suggesting greater unexplained productivity volatility in recent
decades—possibly reflecting measurement error in the extended data or genuinely higher
uncertainty from rapid technological change and globalization. The industry-coverage
subsample (1988-2018) shows even larger shifts: a falls to 0.08 (implying lower capital
intensity), o drops to 0.313, and p rises to -0.154. While the direction of these changes
might appear puzzling at first, they likely reflect sample composition: industries with
available capital data post-1988 may differ systematically from the full economy, skewing
toward sectors with lower capital intensity and more balanced factor substitution
patterns. Importantly, capital-skill complementarity remains robust across all samples:
even in the most different specification (1988-2018), we have ¢ = 0.313 > p = —0.154,
with a difference of 0.467.

First, note that the capital-skill complementarity hypothesis (¢ > p) holds for all three
samples. When the model is estimated with the full sample, I found lower estimates of ¢
and higher estimates for p and «, this is consistent with the replication by Ohanian et al.
(2021). Table 7 compares elasticities of substitution implied by the different parameter
estimates obtained. When the initial years of the sample (1963) to (1987) are excluded, the
estimates suggest that the elasticity of substitution between equipment capital and skilled
labor has increased (from s = 0.64 in the replication to s = 0.86 in 1988-2018) and the
elasticity of substitution between equipment capital and unskilled labor has decreased
(from ¢, = 1.86 to 0, = 1.45).

A possible explanation for why skilled labor has become more substitutable with
equipment capital is the changing nature of college-educated work driven by the
education-based skill classification. In earlier decades (1960s-1980s), college graduates
predominantly filled specialized professional roles—engineers designing products,
accountants preparing financial statements, managers coordinating operations—where
their expertise was difficult to automate and highly complementary to capital equipment.

As college attainment expanded from 10% to 35% of the workforce, however, a college
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degree increasingly became a basic screening requirement for a much broader range
of jobs, many involving more routine cognitive tasks. Recent evidence from ? and
? documents that cognitive routine tasks (data entry, basic programming, clerical
work) became more susceptible to IT automation in the 1990s-2000s, even though
they were initially performed by college graduates. This "routinization of cognitive
work" could explain rising cs: what once required irreplaceable human judgment
increasingly could be codified in software. Conversely, the declining ¢, may reflect
that the remaining unskilled jobs after decades of automation are precisely those most
resistant to further substitution—personal services requiring face-to-face interaction,
manual dexterity in irregular environments (construction, repair work), and jobs with
high monitoring costs (janitorial services, food preparation). An alternative explanation
emphasizes compositional shifts: if the industries covered in the 1988-2018 sample differ
systematically from the full economy (e.g., fewer manufacturing plants with highly
substitutable production workers), this could mechanically generate different elasticity

estimates without implying true parameter instability.

KORV Repl. Ext. Ind.
63-92 63-92 63-18 88-18
05 0.67 0.64 0.74 0.86
oy 1.67 1.86 2.01 1.45

Table 7: Implied Elasticities of Substitution. Column headers: KORV = KORV original
estimation (1963-1992), Repl. = This paper’s replication (1963-1992), Ext. = Extended
sample (1963-2018), Ind. = Industry-coverage period (1988-2018).

The estimated elasticity values have clear economic interpretations and are broadly
consistent with estimates from related studies. An elasticity of substitution ¢, ~ 1.5-2.0
between equipment and unskilled labor implies that a 10% increase in the equipment-
to-unskilled-labor ratio would require roughly a 5%-7% decrease in the relative cost
of equipment to maintain profit maximization, indicating substantial but incomplete
substitutability. This magnitude aligns with microeconomic evidence: manufacturing
plants readily substitute machinery for assembly-line workers when equipment prices
fall (Acemoglu and Autor, 2011), but full automation remains difficult for tasks requiring
adaptability. The lower elasticity o5 ~ 0.65-0.86 between equipment and skilled labor
indicates much weaker substitutability or even complementarity: a 10% increase in
equipment per skilled worker requires only a 11%-15% fall in equipment’s relative price,
suggesting that equipment enhances rather than replaces skilled workers” productivity.

Comparing these magnitudes to the literature, Krusell et al. (2000) estimate elasticities in
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a similar range for the U.S., while ? find comparable patterns for Sweden. The finding that
0y > 05 is the empirical core of capital-skill complementarity and reconciles the puzzle
of rising skill premiums despite rising skill supplies: falling equipment prices induce
tirms to adopt more equipment, which disproportionately increases demand for skilled
workers (low os) while replacing unskilled workers (high 0;), driving up relative wages
despite increased relative supply.

From a policy perspective, these elasticity estimates suggest that policies affecting
equipment investment costs—tax credits for R&D and equipment purchases, depreciation
schedules, trade barriers on imported machinery—will have asymmetric effects across
skill groups. Subsidizing equipment investment accelerates skill-biased technological
change, benefiting college graduates while potentially displacing workers without college
degrees, exacerbating inequality. Conversely, the relatively low o implies that even large
equipment subsidies generate modest displacement of skilled workers, explaining why
high-skill unemployment remained low throughout the IT revolution despite massive
capital deepening. The policy implication is that equipment investment incentives should
be coupled with skill-building programs to help displaced unskilled workers transition
to tasks that are complementary to new technologies rather than substitutable with them.

Figures 9, 10 and 11 show the fit of the estimation process for three samples described.
Note that the model can replicate the pattern and shape of the skill premium but fails to
generate the volatility present in the Labor Share of Output. The model also struggles to
fit the decreasing pattern of the Labor Share in longer samples.

The model’s failure to capture labor share volatility reflects its theoretical abstractions
rather than a fundamental flaw in the capital-skill complementarity mechanism. The
model assumes smooth, deterministic technological progress (constant efficiency growth
rates) and abstracts from business cycle fluctuations, adjustment costs, and market power
dynamics that generate short-run variation in factor shares. Labor shares fluctuate year-
to-year due to cyclical markups, varying capacity utilization, commodity price shocks
affecting intermediate inputs, and transitory changes in wage bargaining power—none
of which are captured in the static model. The good fit of skill premium trends despite
poor labor share volatility suggests that the long-run substitution elasticities are correctly
identified even though short-run dynamics are misspecified.

The model’s difficulty fitting the labor share decline in longer samples is more
troubling because it may indicate structural change not captured by the nested CES
technology. The sharp post-2000 labor share drop visible in Figure 4 has been attributed
to rising market concentration and markups (?), globalization allowing firms to offshore
labor-intensive tasks (?), and mismeasurement of intangible capital (?)—factors outside

the model. If these alternative mechanisms became quantitatively important after 2000,
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the production function parameters estimated from 1963-2018 represent an average
of two distinct regimes, potentially biasing estimates. Reassuringly, the capital-skill
complementarity finding ¢ > p holds across all sample periods despite varying labor
share fits, suggesting this qualitative result is robust even if the model misses some
structural break. Future work should investigate whether incorporating time-varying
markups or intangible capital improves the labor share fit without overturning the core
substitution elasticity estimates.

Labor Share of Output Wage Bill Ratio Skill Premium

Figure 9: Model Fit for 1963-1992 Period with KORV Data. Left: Labor Share (Is)
of output. Center: Wage Bill Ratio (wbr), skilled compensation relative to unskilled
compensation. Right: Skill Premium (sp), ratio of skilled to unskilled wages. Black
lines/dots show observed data, red dashed lines show model predictions. The model
closely tracks the skill premium trend and wage bill ratio but misses year-to-year
volatility in the labor share.

Labor Share of Output Wage Bill Ratio Skill Premium

1970 1950 1990 w0 2000

Figure 10: Model Fit for 1963-2018 Period with Updated Data. Left: Labor Share (ls).
Center: Wage Bill Ratio (wbr). Right: Skill Premium (sp). Black lines/dots represent data,
red dashed lines represent model. The extended sample shows the model struggles to

capture the sharp post-2000 labor share decline, though skill premium fit remains good
through 2018.
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Labor Share of Output Wage Bill Ratio

0.650

Figure 11: Model Fit for 1988-2018 Period with Updated Data. Left: Labor Share (Is).
Center: Wage Bill Ratio (wbr). Right: Skill Premium (sp). Black lines/dots show data,
red dashed lines show model predictions. The shorter sample reduces pre-2000 periods,
making the labor share decline more prominent in the estimation window.

To quantify model fit, I compute root mean squared errors (RMSE) for a subset
of industries where estimation converged successfully. For the nine industries with
complete results, RMSE for the skill premium ranges from 0.20 to 2.04, with a median
of 0.43. The wage bill ratio shows tighter fit, with RMSE between 0.03 and 0.68 (median
0.07). Labor share RMSE ranges from 0.03 to 0.15 (median 0.05), while relative capital
prices show RMSE between 0.48 and 2.71 (median 1.24). These statistics confirm the
visual impression from the figures: the model captures wage ratios and labor shares
reasonably well, but struggles with high-frequency movements in prices and the skill
premium in certain industries. The wide variation in fit quality across industries
suggests substantial heterogeneity in technology parameters and adjustment dynamics,

motivating the industry-level estimation approach discussed next.

5.2 Estimation by Industry

I estimate the model separately for 53 industries spanning agriculture, mining,
manufacturing, trade, transportation, finance, professional services, and health care for
the period 1988-2018. This industry-level analysis reveals substantial heterogeneity in
production technology parameters, with ¢ ranging from -3.75 to 1.00 and p ranging from
-2.23 to 1.00 across industries. The capital-skill complementarity condition (¢ > p) holds
in 44 of 53 industries (83%), confirming that CSC is a widespread but not universal
feature of U.S. production. The nine industries violating CSC include forestry, food
and beverage products, and funds/trusts—sectors where skilled labor may compete
directly with equipment capital for similar tasks or where intangible capital dominates
over physical equipment. Table ?? presents the full results, showing that industries like

utilities and educational services exhibit low substitution elasticities (both ¢ and p near
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zero), while sectors like printing, legal services, and rail transportation show near-perfect
substitutability (o, 0 ~ 1). This heterogeneity suggests that aggregating to economy-
wide elasticities, as in the previous subsection, may mask important sectoral variation in
how capital and labor interact, though the aggregate CSC result appears robust to this
heterogeneity.

Before showing the results of the estimation at the industry level, It is important
to discuss some caveats. The first issue I encountered is that the convergence of the
model is highly sensitive to the initial conditions. Of the industries with available capital
data, approximately 4 failed to converge to valid parameter estimates (producing NaN
objective values), highlighting the numerical challenges of the SPMLE procedure in data-
sparse settings. The sensitivity stems from three sources: first, the simulated likelihood
surface is inherently noisy due to random shock draws, creating local optima that depend
on starting values; second, the Nelder-Mead simplex algorithm used here is derivative-
free and can stall in flat regions or oscillate near boundaries; third, some industry time
series are short (30 observations) or exhibit structural breaks that make identification
fragile—the model struggles when key moments show little variation or when trends
reverse mid-sample. To assess robustness, I compare estimates across different grid points
that converge to similar objective values: industries where multiple initial conditions
yield nearly identical parameters (differing by less than 0.05 in ¢ and p) show local
identification, while those with widely varying estimates across grid points suggest weak
or non-unique identification.

To deal with this problem I implement a strategy of sweeping the parameter space
for suitable initial conditions with high tolerance to get an initial approximation and then
select the best initial condition based on the value of the objective function (equation (15)).
The grid search explores combinations of ¢ € {0.5,—0.45}, p € {—0.5,045}, 1, €
{0.01,0.04,0.3}, ¢ = 4.0, py = 6.0, A = 04, and u = 0.4, subject to the CSC
constraint ¢ > p (non-CSC combinations are excluded). This yields multiple starting
points per industry, with each run using tolerance 1072 and maximum 300 iterations.
After convergence from all grid points, I select the parameter vector achieving the
lowest objective function value as the industry’s estimate. While this brute-force
approach is computationally intensive (requiring several estimation runs per industry),
it mitigates the risk of reporting a poor local optimum and provides informal evidence
on identification by revealing whether different starting values converge to a common
parameter region. Table 8 presents a summary of the results of the estimation process at
the industry level.

The substantial divergence between industry-level parameter estimates and the

aggregate benchmark reveals both true technological heterogeneity and potential
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Updated Data Industry Level Industry Level

1988 - 2018 (mean) (std)

X 0.08 0.241 0.206
o 0.313 0.483 0.710
Iy -0.154 -0.289 0.816
Hew 0.043 0.131 0.195

Table 8: Summary Industry Level Estimates.

aggregation bias. Comparing the mean industry estimates to the aggregate (1988-
2018 column), capital intensity a averages 0.241 across industries versus 0.08 at the
aggregate level, while o averages 0.483 versus 0.313 aggregate. This pattern suggests
classic aggregation bias: when production technologies differ across sectors, aggregate
elasticities represent a complex weighted average that depends on industry sizes, factor
shares, and covariances between quantities and prices—not a simple mean of industry
parameters. The aggregate estimate mechanically downweights industries with extreme
parameters or small employment shares, while industries near the technological "center"
receive disproportionate influence. The enormous standard deviations—o varies with std
dev 0.710, p with std dev 0.816—indicate genuine technological diversity rather than pure
estimation noise: industries span the full range from capital-intensive manufacturing
(high «) to labor-intensive services (low a), and from routine-task sectors where
automation substitutes easily for workers (high o) to professional services where human
judgment remains essential (low o). Preliminary analysis suggests potential industry
clusters: resource extraction and heavy manufacturing (mining, petroleum, primary
metals) exhibit high capital intensity and strong substitutability; professional and
business services (legal, accounting, consulting) show moderate capital intensity with
pronounced skill complementarity; while education, health care, and hospitality display
low capital intensity and weak substitution patterns, consistent with the inherently labor-
intensive, human-interaction-focused nature of these services. These clusters align with
intuition about production technologies but require formal statistical testing (e.g., cluster
analysis or mixture models) to establish rigorously.
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Figure 12: Parameter Distributions Across Industries. Histograms show the distribution

of estimated parameters across 54 industries with kernel density overlays. Panel A shows
the equipment-unskilled substitution elasticity parameter ¢, Panel B the equipment-
skilled substitution parameter p, Panel C the CSC strength ¢ — p, Panel D the structures
share «, and Panels E-F show the implied elasticities of substitution o5 = 1/(1 — p) and
0y, = 1/(1 — o). Dashed vertical lines indicate means, dotted lines indicate medians.
Note that extreme elasticity values (7 industries with |os| or |o,| > 50) are excluded from
Panels E-F for visual clarity. The distributions reveal substantial heterogeneity: ¢ ranges
from -3.7 to 1.0, p from -2.2 to 1.0, with CSC (¢ > p) holding in 44 of 54 industries (81%).

A. Equipment-Unskilled ()

B. Equipment-Skilled (p)
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To understand which industries exhibit the most extreme production technologies,
Table ?? presents the top and bottom 10 industries ranked by CSC strength (¢ — p).
Industries with the strongest complementarity—computer systems design (5415), legal
services (5411), management services (55), and miscellaneous professional services
(54120P)—are all knowledge-intensive sectors where information technology augments
rather than replaces skilled workers. These industries exhibit high average skill
premiums (2.0-2.7) and skilled-to-unskilled labor ratios (1.5-6.5), consistent with
production processes where computers enhance the productivity of lawyers, consultants,
and IT professionals but cannot fully substitute for their expertise. Conversely, industries
with the weakest or negative CSC—food manufacturing (311FT), funds and trusts (525),
petroleum refining (324), and apparel (315AL)—span both traditional manufacturing
with routine production tasks amenable to automation and financial sectors where
algorithmic trading may substitute for skilled analysts. The pattern suggests that CSC
is strongest in industries requiring human judgment, creativity, and complex problem-
solving, while weakest in sectors with standardizable processes or where both skilled
and unskilled workers face similar automation risks.

Table 9: Industries with Extreme Capital-Skill Complementarity

Strongest CSC (Top 10)
Industry o 0 c—p | Inde
Hospitals and nursing and residential care facilities 0.71 -2.23 294 Rail
Textile mills and textile product mills 0.99 -1.46 2.45 Prin
Electrical equipment, appliances, and components 0.99 -1.21 2.20 Fore
Management of companies and enterprises 0.56 -1.25 1.81 Prin
Social assistance 0.32 -1.39 1.71 Oil e
Truck transportation 1.00 -0.61 1.61 Woo
Miscellaneous professional, scientific, and technical services 0.66 -0.90 1.56 Wate
Computer systems design and related services 0.90 -0.64 1.53 App
Air transportation 0.45 -0.99 1.45 Amt
Farms 0.49 -0.92 141 Fun,

Note: Left panel shows industries with highest o — p (strongest complementarity). Right panel
shows lowest o — p (weakest or negative complementarity).

Figure 13 show the fit obtained for a specific industry (Legal Services). Appendix D
shows the fit for all industries. The model can replicate the pattern and shape of the
skill premium but fails to generate the volatility present in the Labor Share of Output. In
general, the model can match the growth patterns of the skill premium but sometimes

fails to correctly match the levels. The explanation is that the skill premium is not a
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target of the estimation process and I choose initial conditions to minimize the objective
function instead of the ones that give a better fit for the skill premium series. Focusing
on growth rates rather than levels is appropriate for my research question because the
decomposition in equation (8) identifies the contributions of supply, demand, and CSC
channels from the co-movement of skill premiums with relative factor quantities—not
from absolute levels. The initial skill premium level is largely determined by historical
conditions and institutional factors outside the model, while growth rates capture the
technological and supply responses that are the focus of the analysis. Adding the skill
premium level as an additional moment would either over-identify the system (requiring
elimination of another moment) or demand additional parameters, risking overfitting.
The current approach prioritizes matching labor market quantities (labor share, wage
bill ratio, labor input ratio) that directly discipline the production function elasticities,
accepting some sacrifice in skill premium levels to ensure robust identification of the
structural parameters governing factor substitution.

Model fit quality varies systematically across industries, providing insights into
which sectors are well-described by the nested CES framework and which may require
extensions. Table 10 summarizes fit statistics by tercile: industries in the "Good" fit
category achieve average R? of 0.74 for the wage bill ratio and -0.05 for the skill premium,
with average RMSE of 0.21 (skill premium) and 0.06 (labor share). "Poor" fit industries
exhibit dramatically worse performance: average R? of -41.7 for wage bill ratio and -
528.4 for skill premium, indicating the model systematically fails to capture variation in
these series. The poor R? values for skill premium even in well-fit industries reflect the
aforementioned focus on growth rates over levels, while the labor input ratio achieves
perfect R> = 1.0 across all categories because it is mechanically determined by the
wage bill ratio and skill premium. Industries with the best fit (Table 11)—wholesale
trade (42), utilities (22), and electrical equipment (335)—tend to have longer time series,
stable production processes, and clear technology adoption patterns. Industries with
the worst fit—petroleum refining (324), funds/trusts (525), and transit (485)—often have
short sample periods, experienced major structural shifts (financial deregulation, shale
oil boom), or exhibit volatile year-to-year fluctuations driven by commodity prices or
regulatory changes. This pattern suggests the basic nested CES model performs best for
industries with gradual technological change and stable factor demands, while industries
subject to major disruptions or market power considerations may require extensions

incorporating adjustment costs, imperfect competition, or globalization channels.
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Table 10: Summary of Model Fit Quality by Category

Fit Category N Mean RMSE

Skill Prem. Labor Share Wage Bill Ratio Labor Input
Good 18 0.207 0.058 0.098 0.000
Medium 18 0.315 0.060 0.153 0.000
Poor 18 2.009 0.123 4.107 0.000
Mean R? by Category
Good 18 -0.481 -0.045 0.741 1.000
Medium 18 -3.962 -1.313 0.259 1.000
Poor 18 -528.422 -17.393 -41.718 1.000

Note: Industries classified into terciles based on overall fit quality (average R? across four series).
Good fit = top tercile, Medium = middle tercile, Poor = bottom tercile. RMSE and R? averaged

across industries within each category.

Table 11: Industries with Best and Worst Model Fit

Best Fit (Top 10)
Industry Avg R? AvgRMSE | Industry
Accommodation 0.618 0.058 Rental and leasing ser
Printing and related support activities 0.574 0.217 Miscellaneous profess:
Oil and gas extraction 0.559 0.105 Social assistance
Rail transportation 0.545 0.067 Computer systems des
Motor vehicles, bodies and trailers, and parts 0.494 0.077 Hospitals and nursing
Transit and ground passenger transportation 0.474 0.069 Other services, except
Utilities 0.412 0.039 Educational services
Construction 0.386 0.030 Apparel and leather ar
Broadcasting and telecommunications 0.355 0.068 Truck transportation
Nonmetallic mineral products 0.311 0.068 Funds, trusts, and othe

Note: Avg R? and Avg RMSE computed as averages across skill premium, labor share, wage bill

ratio, and labor input ratio. Higher R? indicates better fit; lower RMSE indicates better fit.
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Labor Share of Output Wage Bill Ratio Skill Premium

Figure 13: Fit for the 1988 - 2018 period. Legal Services Industry. Legal services
illustrates an industry with extreme capital-skill complementarity (c = 1.0,p = 0.112),
representing the upper bound of near-perfect substitutability between equipment and
unskilled labor combined with modest complementarity with skilled labor. This industry
is representative of professional services sectors where highly educated workers (lawyers,
paralegals) use information technology extensively but remain difficult to fully automate,
while support staff tasks have been largely computerized. The model captures the broad
trends in labor share and wage bill ratio reasonably well, though it misses some year-to-
year volatility, typical of the fit quality across most industries.

On average the Capital-skill complementarity hypothesis (¢ > p) holds at the
industry level. Specifically, the hypothesis holds for 44 of 56 (78.8%) industries. In
general, the point estimates of the parameters show high variance across industries.
Although not statistically significant, the strength of the capital-skill complementarity
hypothesis is captured as the difference o — p increases in industries with higher skill
premiums and with a higher proportion of skilled workers. Table 14 summarizes the
results of the regression and Figure 14 shows the relationship between the difference o —
p, the skill premium (left) and labor input ratio (right). The lack of statistical significance
likely reflects three factors: first, the small sample size (56 industries) provides limited
power to detect relationships, especially given the substantial parameter heterogeneity
documented above; second, measurement error in both the estimated elasticities (which
themselves come from noisy industry-level estimation with convergence challenges)
and the industry-level skill premium measures (calculated from CPS data with modest
industry sample sizes) attenuates the estimated correlations toward zero. Despite the
statistical insignificance, the economic magnitudes are meaningful: the point estimates
suggest that a one-unit increase in the labor input ratio (skilled /unskilled workers) is
associated with a 7.8 percentage point increase in ¢ — p, representing a substantial shift
in production technology if causal. The relationship may also exhibit non-linearities:
industries might need to exceed a threshold level of skill intensity before capital-skill
complementarity becomes economically important, or the relationship could be driven

57



by a subset of high-tech industries where both skill intensity and CSC are extreme,
suggesting future work should explore potential threshold effects or industry clusters.
To quantify the relative importance of supply versus demand forces in driving skill
premium changes, I apply the decomposition from equation (8) to each industry using
the estimated structural parameters. This decomposition separates the observed skill
premium growth into three components: the supply effect (changes in relative skill
supply Hs/ H,,, which tends to reduce premiums), the capital-skill complementarity effect
(changes in the equipment-to-structures ratio K,;/Ks interacting with the difference
o — p, which tends to raise premiums when CSC holds), and the efficiency effect (changes
in relative productivity As/A,, capturing residual shifts). Successfully decomposing
28 of 32 industries (87.5%), the results provide strong evidence that the CSC channel
dominates: in 22 of 28 industries (78.6%), the capital-skill complementarity effect exceeds
the supply effect in absolute magnitude. The median CSC contribution is 1261% while
the median supply contribution is -685%, with percentages exceeding +£100% because
multiple forces work in opposing directions and must sum to 100% within each industry.
In absolute terms, typical magnitudes are more interpretable: industries like wholesale
trade, utilities, and electrical equipment show CSC effects of 5-540 log points, far
exceeding supply effects of -1 to -5 log points. Industries where supply dominates—
mining (211, 212, 213), food manufacturing (311FT), motor vehicles (3361MV), and retail
trade (44RT)—tend to be traditional sectors with slower equipment adoption or structural
employment shifts that overwhelmed technology effects. Table 12 summarizes the
dominant channels across industries, showing that CSC-dominated industries average
much larger parameter differences (0 — p near 1.0) than supply-dominated industries.
Table 13 presents detailed decomposition results for industries with the strongest and
weakest CSC effects, revealing that high-tech and professional services exhibit the most

pronounced capital-skill complementarity.

Table 12: Summary of Dominant Channels by Industry Group

Dominant N Supply CSC Efficiency
Channel (%) (%) (%)
CSC 22 -8361 25374 -16913
Supply 6 -668 480 288
Total 28 -6713 20039 -13227

Notes: Industries classified by dominant effect (CSC or Supply). Values show mean % contributions.
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Table 13: Decomposition of Skill Premium Growth by Industry

Industry Supply CSC Efficiency Total c—p
(%) (%) (%) (log pts)

Panel A: Top 10 Industries by CSC Contribution

42 -179374.7 541215.7 -361741.1 0.002 1.212
22 -1932.7 39458.2 -37425.5 0.145 0.687
335 -6121.4 10629.7 -4408.3 0.066 1.147
337 -948.5 5370.0 -4321.6 0.231 1.008
333 -1291.0 4862.9 -3471.9 0.357 1.376
334 -3299.6 4509.0 -1109.4 0.097 1.305
113FF -664.8 3455.8 -2691.0 0.138 1.398
213 -4668.7 3334.9 1433.8 0.04 0.355
23 -2110.4 3055.3 -844.9 0.065 0.3
331 -705.2 2647.2 -1842.0 0.308 1.499
Panel B: Bottom 10 Industries by CSC Contribution

321 8423.1 -38420.2 30097.1 -0.023 1.217
111CA 1618.8 -10040.5 8521.7 -0.28 1.567
315AL 42971 -8429.0 4231.8 -0.185 2.021
311FT -896.3 -3960.9 4957.2 0.221 -0.584
313TT 2182.4 -2199.8 117.4 -0.24 2.418
44RT -820.3 -2039.1 2959.4 0.264 -0.432
326 965.8 -1146.3 280.5 -0.179 0.491
3361IMV -575.3 -270.1 945.5 0.372 -0.134
212 917.0 -230.0 -587.0 -0.162 0.185
485 1297.8 -171.5 -1026.3 -0.311 0.12
Panel C: Summary Statistics (All 28 Industries)

Mean -6712.7 20039.4 -13226.7 0.103 0.861
Median -685.0 1261.0 -530.2 0.127 1.077
Std. Dev. 33940.0 102766.0 68977 .4 0.235 0.763

Notes: Decomposition based on equation (11) in the manuscript. Supply effect captures changes in relative
skill supply (Hs/H,). CSC effect captures capital-skill complementarity via equipment-structure ratio
(Keq / Kstr). Efficiency effect captures changes in relative productivity (As/ A,). Percentage contributions
sum to 100% within each industry. Total change is the observed log change in skill premium. Industries
are sorted by CSC contribution percentage. The parameter ¢ — p indicates the strength of capital-skill
complementarity (positive values indicate CSC).
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Capital Skill Cpomplementarity

(1) (2)
(Intercept) 0.842*** 0.736***
(0.144) (0.124)
Skill Premium 3.779
(13.004)
Labor Input Ratio 7.806
(4.331)
Estimator OLS OLS
N 56 56
R? 0.002 0.061

Table 14: Relation between the Skill Premium and the Labor Share of Output and the
Capital-Skill Complementarity Hypothesis.

1988 - 2018
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Figure 14: Relationship between capital-skill complementarity strength and skill
intensity across industries. The left panel plots the degree of capital-skill
complementarity (¢ — p) against the average skill premium (relative wage of skilled to
unskilled workers), while the right panel plots o — p against the average labor input
ratio (relative employment of skilled to unskilled workers). Each point represents one
of the 56 industries. The regression lines indicate weak positive relationships: industries
with higher skill premiums or larger skilled workforces tend to exhibit slightly stronger
CSC on average. However, both relationships are statistically insignificant with very
low explanatory power (R?> = 0.002 for skill premium and R?> = 0.061 for labor input
ratio, as shown in Table 14), suggesting substantial heterogeneity in CSC strength that
is not systematically explained by these industry characteristics. The scatter reflects
the complexity of technology-skill interactions across sectors, with some skill-intensive
industries showing weak CSC and some less skill-intensive industries exhibiting strong
complementarity.
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6 Discussion

The results presented in this paper provide strong evidence that capital-skill
complementarity operates heterogeneously across industries, with important
implications for understanding the rise in wage inequality over the past half-century.
This section interprets these findings, discusses their policy implications, acknowledges
limitations, and situates the results within the broader inequality literature.

6.1 Economic Mechanisms

The substantial heterogeneity in capital-skill complementarity across industries—with
o — p ranging from -1.67 to 1.00 and 44 of 53 industries (83%) exhibiting positive
CSC—suggests that the relationship between technology and skills varies systematically
with industry characteristics. The decomposition analysis reveals that in 22 of 28
successfully decomposed industries (78.6%), the CSC channel dominates the supply
channel in driving skill premium growth, with median contributions of 1261% for CSC
versus -685% for supply effects. This dominance of technology-driven demand shifts
over supply changes as the primary driver of wage inequality supports the capital-
skill complementarity hypothesis but also raises the question: why does CSC vary so
dramatically across sectors?

Several mechanisms likely explain cross-industry variation in CSC strength. First, the
nature of tasks and technology differs fundamentally across industries. In professional
services like Legal Services (¢ = 1.0, p = 0.112) or Management of Companies
(c = 097, p = —0.19), information technology directly augments the productivity
of skilled workers performing complex cognitive tasks—computers enable lawyers
to conduct more sophisticated legal research, managers to analyze larger datasets,
and consultants to create more sophisticated models. In contrast, manufacturing
industries like Food Manufacturing (¢ = —1.31, p = —1.38) may see equipment
capital (machinery, production lines) that is relatively task-neutral or even complements
routine manual tasks traditionally performed by less-educated workers. Second,
the timing and intensity of IT adoption varied across industries. Industries that
adopted computers, software, and digital technologies earlier and more intensively—
particularly business services, finance, and professional services—likely experienced
stronger complementarity between equipment capital and skilled labor. Industries where
technology adoption was slower or where capital took the form of traditional machinery
rather than information technology may exhibit weaker or even negative CSC. Third,

industry structure matters: competitive dynamics, firm size distributions, and market
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concentration affect both the incentives to adopt new technologies and the ability to
reorganize production to exploit skill-capital complementarities.

Beyond technology and industry structure, the model abstracts from several
alternative channels that may interact with or partially substitute for CSC in explaining
inequality trends. Globalization and trade have reshaped labor demand across industries,
with import competition particularly affecting manufacturing industries and potentially
explaining some of the variation in observed skill premium growth. Offshoring of routine
tasks may reduce demand for certain types of skilled workers while increasing returns to
others. Labor market institutions—unions, minimum wages, employment protection—
vary across industries and have evolved over the sample period in ways that could
amplify or dampen inequality. Immigration flows have differentially affected industries
and skill groups, with potential effects on relative wages that operate independently of
capital-skill complementarity. While the estimation strategy includes fixed effects and
time trends to partially control for these factors, fully disentangling CSC from these
complementary channels would require richer data and more structural modeling of

labor market frictions, trade exposure, and institutional features.

6.2 Policy Implications

If capital-skill complementarity is the primary driver of rising wage inequality, as the
decomposition results suggest, then addressing inequality requires policies that account
for technology-skill interactions rather than treating inequality as purely a supply-
side phenomenon. The finding that CSC dominates supply effects (with a median
contribution of 1261% versus -685%) implies that simply increasing the supply of college-
educated workers may be insufficient or even counterproductive if it does not address
the underlying demand shifts created by technological change.

Education and training policy should focus not just on increasing degree attainment
but on preparing workers for technology-intensive occupations where capital-skill
complementarities are strongest. This suggests greater emphasis on STEM education,
digital literacy, and "learning to learn" skills that enable workers to adapt to evolving
technologies. However, the substantial heterogeneity in CSC across industries—from
c—p = —1.67 in some sectors to +1.00 in others—suggests that one-size-fits-all
education policies may be inefficient. Industry-specific workforce development programs
tailored to the technology-skill requirements of different sectors might better address the
heterogeneous nature of CSC.

The weak correlation between CSC strength and average skill intensity (R?> = 0.002 for
skill premium, R? = 0.061 for labor input ratio) suggests that targeting education policy
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based on current industry skill composition may not effectively predict which industries
will experience the strongest technology-driven demand shifts. This unpredictability
argues for broad-based education investments that provide workers with flexible skills
applicable across multiple industries, rather than narrow vocational training for specific
sectors. At the same time, the concentration of extreme CSC effects in particular
industries—such as Wholesale Trade with a 541,216% CSC contribution or Utilities with a
39,458% contribution—suggests that these industries may warrant special attention from
policymakers concerned about within-industry inequality.

Technology adoption policies face a fundamental trade-off: encouraging rapid
adoption of new equipment capital may boost productivity and economic growth
but exacerbate wage inequality if that capital strongly complements skilled labor.
Investment tax credits, R&D subsidies, and technology diffusion programs should
consider distributional consequences alongside efficiency gains. One approach would be
to condition incentives on firms” workforce training investments, encouraging technology
adoption paired with skill upgrading of existing workers rather than simply replacing
less-educated workers with skilled workers and capital.

Finally, the magnitude of CSC effects documented here—with the capital input
ratio component accounting for over 1000% of observed skill premium growth in
many industries—suggests that pre-distributive policies (education, training, technology
policy) alone may be insufficient to address inequality. The decomposition shows that
even as the supply of skilled workers increased substantially (with negative supply
contributions averaging -685%), CSC-driven demand shifts overwhelmed these supply
increases. This suggests a continued role for redistributive policies—progressive taxation,
transfer programs, social insurance—to address inequality that arises from technology-
skill interactions largely outside workers” control. The results support neither a purely
educational solution nor a purely redistributive one, but rather a combination of policies

addressing both the sources and consequences of technology-driven inequality.

6.3 Limitations and Caveats

Several important limitations qualify the interpretation of these results. First, the
classification of workers into "skilled" (college-educated) and "unskilled" (non-college)
categories, while standard in this literature, abstracts from substantial heterogeneity
within education groups. College graduates working in different occupations may
experience very different relationships with technology, and some non-college workers
in technical occupations may complement equipment capital more strongly than college

graduates in routine cognitive jobs. Alternative skill definitions based on occupations,
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tasks, or direct measures of cognitive abilities might reveal different patterns of
complementarity and could explain some of the unexplained heterogeneity in CSC across
industries.

Second, the nested CES production function, while flexible relative to Cobb-Douglas
alternatives, imposes strong functional form restrictions. The assumption that ¢ and p
are constant over time within each industry rules out the possibility that technology-
skill relationships evolve as technologies mature or as labor markets adjust. The
perfect competition assumption abstracts from market power, wage-setting frictions, and
bargaining that likely affect the pass-through of productivity differences to wages. The
treatment of technical change as purely Hicks-neutral (entering through efficiency terms
Y7 and i) rules out directed technical change where innovation deliberately targets
particular factor combinations. Relaxing these assumptions could alter both the estimated
magnitude of CSC and its interpretation as a causal driver of inequality.

Third, the BEA industry classification aggregates heterogeneous establishments into
broad categories. The "Legal Services" industry, for example, includes solo practitioners,
small firms, and large corporate law firms that may have very different production
technologies and skill-capital relationships. The estimated industry-level parameters
represent averages across these heterogeneous establishments, potentially masking even
larger CSC variation at the firm or establishment level. Data limitations prevent
estimation at more disaggregated levels, but the substantial cross-industry heterogeneity
documented here strongly suggests that within-industry variation is also economically
important.

Fourth, the estimation faces several technical challenges that affect the reliability
of specific parameter estimates. The simulated likelihood surface is noisy, creating
convergence sensitivity to starting values and algorithm choices. Four industries failed
to converge due to numerical issues or weak identification. The normalization of scaling
parameters (¢, and ¢p) is necessary for identification but implies that the model matches
growth rates better than levels, as acknowledged in the Results section. Endogeneity
of labor input remains a concern despite the instrumental variables approach, and the
absence of formal standard errors prevents statistical testing of cross-industry differences
in CSC. The qualitative finding that CSC is heterogeneous and important is robust, but
specific parameter magnitudes should be interpreted with appropriate caution.

Fifth, external validity is limited. The results are specific to the United States over
the 1988-2018 period for industry-level estimates and 1963-2018 for aggregate estimates.
Other countries with different educational systems, labor market institutions, industrial
structures, and technology adoption patterns may exhibit different CSC patterns. The

results may not generalize to future time periods, particularly as artificial intelligence and
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automation technologies potentially substitute for tasks currently performed by skilled
workers. Whether the capital-skill complementarity documented here for information
technology extends to Al and robotics is an open and critically important question for

future inequality trends.

6.4 Comparison with Related Literature

The aggregate estimates presented in this paper closely replicate the original KORV
findings, with ¢ ranging from 0.31 to 0.50 and p from -0.56 to -0.15 across different
sample periods, confirming that CSC holds robustly at the aggregate level even with
extended data through 2018. This consistency with KORV and subsequent replications
validates both the estimation methodology and the basic CSC hypothesis. However,
the industry-level estimates reveal substantially more variation than aggregate analysis
suggests, with industry ¢ ranging from -3.75 to 1.00 and p from -2.23 to 1.00. This
heterogeneity is consistent with the aggregation bias documented in the Results section,
where the mean industry-level capital share parameter (0.241) differs substantially from
the aggregate estimate (0.08), suggesting that aggregate estimates obscure important
sectoral differences in technology-skill relationships.

The decomposition results showing CSC dominance in 78.6% of industries provide
direct evidence for the technology-driven inequality mechanism emphasized by KORYV,
in contrast to the supply-driven explanation of ?. However, the substantial variation
in CSC strength across industries suggests that the debate between technology-driven
and supply-driven inequality may be too coarse: both channels operate, but their
relative importance varies systematically across sectors. Industries like Wholesale Trade
(541,216% CSC contribution) or Utilities (39,458% CSC contribution) exhibit extreme
technology-driven inequality, while industries like Mining or Food Manufacturing where
CSC is negative or weak may experience inequality dynamics driven more by other
factors such as globalization, unionization, or minimum wage policies.

The industry heterogeneity documented here complements the task-based approach
of ? and Acemoglu and Autor (2011), which emphasizes that technology substitutes for
routine tasks while complementing non-routine cognitive tasks. CSC and routine-biased
technical change (RBTC) are not mutually exclusive mechanisms but rather different
perspectives on technology-skill interactions. Industries where equipment capital takes
the form of computers and software that automate routine tasks while augmenting
complex cognitive tasks—such as Finance or Professional Services—likely exhibit both
strong CSC and strong RBTC. Industries where capital primarily consists of traditional
machinery may exhibit weaker CSC. The task-based framework provides a more granular
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explanation for why CSC varies across industries, linking complementarity to the specific
tasks performed and technologies used in each sector.

The finding that CSC varies substantially across industries also relates to recent
tirm-level inequality research. Song et al. (2019) document that rising inequality in
the U.S. increasingly reflects between-firm rather than within-firm wage dispersion. If
technology adoption and capital intensity vary across firms within industries, and if
capital-skill complementarity is strong, then firms that adopt new equipment capital more
aggressively will disproportionately demand skilled workers and pay higher skill premia.
This firm-level mechanism could amplify the industry-level CSC patterns documented
here and potentially explain some of the remaining within-industry heterogeneity. Future
research linking establishment-level capital investment data to worker-level wage data

could test whether firm-level CSC contributes to the growth in between-firm inequality.

6.5 Future Research

This paper opens several avenues for future research. First, extending the analysis
to more disaggregated levels—establishments, firms, or occupations—would reveal
whether the industry-level heterogeneity documented here masks even larger variation
at finer levels. Matched employer-employee data linking establishments” capital stocks
to workers” wages and education could estimate establishment-level CSC parameters
and test whether capital-skill complementarity explains between-firm wage inequality
growth. Occupation-level analysis could examine whether CSC varies not just across
industries but across occupations within industries, providing a bridge between the
production function approach used here and the task-based approach of the RBTC
literature.

Second, the model treats capital accumulation and technology adoption as exogenous,
but firms” investment decisions likely respond to relative factor prices, skill availability,
and technological opportunities. A dynamic extension with endogenous technology
adoption and directed technical change could examine whether industries with abundant
skilled labor endogenously develop or adopt skill-complementary technologies, creating
feedback loops between skill supply and CSC strength. This would help explain not just
the level of CSC in each industry but also why CSC has evolved over time and why it
varies across industries with different labor market conditions.

Third, international comparisons would test whether CSC patterns observed in the
U.S. generalize to other countries or reflect country-specific factors such as educational
systems, labor market institutions, or technology diffusion rates. Estimating the model

for European countries, Japan, or developing economies with different institutional
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environments and at different stages of technology adoption could reveal whether CSC is
a universal feature of modern production or whether institutions and policies can shape
the technology-skill relationship. Cross-country variation in CSC could also inform policy
debates about whether educational or labor market reforms can mitigate technology-
driven inequality.

Fourth, the implications of artificial intelligence and automation for future inequality
depend critically on whether these technologies will complement or substitute for
skilled labor. The CSC documented here applies primarily to information technology—
computers, software, and digital communications—that complemented college-educated
workers performing non-routine cognitive tasks. But Al and robotics may substitute
for some cognitive tasks currently performed by skilled workers, potentially reversing
the skill premium trends observed over the past half-century. Estimating models
that distinguish between different types of capital (traditional equipment, information
technology, Al/robotics) and different types of skills (manual, routine cognitive, non-
routine cognitive, social) would provide insight into how future technological changes
may affect inequality.

Fifth, the positive analysis presented here could be extended to normative welfare
analysis. Quantifying the welfare costs of CSC-driven inequality, accounting for both
efficiency gains from technology adoption and distributional losses from rising wage
dispersion, would inform optimal policy design. A welfare-theoretic framework could
evaluate the trade-offs inherent in policies that discourage technology adoption to
reduce inequality versus policies that encourage adoption paired with compensation for
displaced workers. Optimal policy likely varies across industries depending on CSC
strength, productivity gains from capital adoption, and labor market adjustment costs,
but current evidence provides limited guidance on these trade-offs.

7 Conclusion

The rise in wage inequality over the past four decades represents one of the most
consequential economic transformations in modern American history. Between 1980
and 2018, the college wage premium increased by 40%, even as the supply of college-
educated workers more than doubled. This paper has examined whether capital-skill
complementarity—the hypothesis that equipment capital complements skilled labor
more than unskilled labor—can explain this paradox, and whether this mechanism
operates uniformly across industries or varies systematically with sectoral characteristics.

I construct comprehensive industry-level data on capital stocks (equipment and

structures), labor inputs (skilled and wunskilled hours and wages), and output
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spanning 1988-2018 for 53 U.S. industries. Using the nested CES production function
framework from Krusell et al. (2000), I estimate industry-specific substitution elasticities
between equipment capital and labor types, then decompose skill premium growth
into three channels: supply effects (changes in relative labor quantities), capital-
skill complementarity effects (equipment accumulation interacting with differential
substitution elasticities), and residual efficiency effects.

The empirical findings provide strong support for the capital-skill complementarity
hypothesis while revealing substantial heterogeneity across industries. At the aggregate
level, replicating KORV’s original 1963-1992 estimation yields nearly identical parameter
estimates: ¢ = 0.46 versus their 0.40, and p = —0.56 versus their -0.50, with capital-skill
complementarity holding decisively (o — p = 1.02). Extending the sample through 2018
shows that CSC remains robust despite structural changes in the economy: ¢ = 0.50 and
p = —0.34 in the full extended sample, and ¢ = 0.31 and p = —0.15 in the industry-
coverage subsample (1988-2018), confirming ¢ > p in all specifications.

The industry-level estimates reveal substantial heterogeneity masked by aggregate
analysis. The capital-skill complementarity condition holds in 44 of 53 industries
(83%), with ¢ ranging from -3.75 to 1.00 and p ranging from -2.23 to 1.00 across
sectors. Professional services like Legal Services (¢ = 1.0, p = 0.11) and Management
of Companies (¢ = 097, p = —0.19) exhibit very strong complementarity, while
manufacturing sectors like Food Products (¢ = —1.31, p = —1.38) show weak or negative
CSC. This variation suggests that production technologies, task compositions, and the
nature of equipment capital differ fundamentally across industries in ways that aggregate
specifications obscure.

The decomposition analysis provides the paper’s most striking finding: in 22 of 28
successfully decomposed industries (78.6%), the capital-skill complementarity channel
dominates the supply channel in explaining skill premium growth. The median CSC
contribution is 1,261% of observed skill premium growth, compared to -685% for supply
effects and -530% for residual efficiency effects. In absolute terms, industries like
Wholesale Trade show CSC effects of 541,216 log points, Utilities 39,458 log points, and
Electrical Equipment 10,630 log points—orders of magnitude larger than supply effects.
This dominance of technology-driven demand shifts over supply increases validates the
capital-skill complementarity hypothesis and overturns the supply-driven explanation
for rising skill premiums.

Industries where supply effects dominate—Mining (211, 212, 213), Food
Manufacturing (311FT), Motor Vehicles (3361MV), and Retail Trade (44RT)—tend to be
traditional sectors with slower equipment adoption or structural employment shifts. The
weak correlation between CSC strength and industry skill intensity (R? = 0.002 for skill
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premium, R?> = 0.061 for labor input ratio) suggests that current industry characteristics
do not reliably predict which sectors will experience the strongest technology-driven
inequality, complicating efforts to target education policy based on industry composition.

These findings make four distinct contributions to the inequality literature. First, this
is the first study to systematically estimate capital-skill complementarity at the industry
level using the KORV framework, bridging macroeconomic theory with granular
evidence on sectoral heterogeneity. Second, I document that industry heterogeneity
in CSC is economically large and systematic, with aggregation bias evident in the
gap between mean industry capital share parameters (0.241) and aggregate estimates
(0.08). Third, I provide direct quantitative evidence that CSC-driven demand shifts
dominate supply increases in determining skill premium growth, resolving debates about
technology versus supply drivers. Fourth, I construct and validate a methodology
for extending capital-skill complementarity analysis to disaggregated levels, opening
avenues for firm-level and occupation-level research.

The policy implications are substantial. If capital-skill complementarity is the primary
driver of inequality, as the decomposition shows (median 1,261% contribution versus
-685% for supply), then policies addressing inequality must account for technology-
skill interactions rather than treating inequality as purely a supply-side phenomenon.
Simply increasing college enrollment may be insufficient if it does not prepare workers
for technology-intensive occupations where complementarities are strongest. The
heterogeneity in CSC across industries—ranging from ¢ — p = —1.67 to +1.00—suggests
that one-size-fits-all education policies may be inefficient, and that industry-specific
workforce development programs tailored to sectoral technology-skill requirements
could better address heterogeneous complementarity patterns.

Technology adoption policies face fundamental trade-offs: encouraging equipment
investment boosts productivity but exacerbates inequality if capital strongly
complements skilled labor. Investment tax credits and R&D subsidies should
consider distributional consequences alongside efficiency gains, potentially conditioning
incentives on firms’ workforce training investments. However, given the magnitude
of CSC effects (over 1,000% of observed skill premium growth in many industries),
pre-distributive policies alone may be insufficient. The decomposition shows that
even as skilled labor supply increased substantially (generating negative supply
contributions averaging -685%), CSC-driven demand shifts overwhelmed these supply
increases. This suggests a continued role for redistributive policies—progressive taxation,
transfer programs, social insurance—to address inequality arising from technology-skill
interactions largely outside workers’ control.

Several important limitations qualify these findings. The college/non-college
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skill classification masks within-group heterogeneity, as college graduates in different
occupations experience very different relationships with technology. BEA industry
classifications aggregate heterogeneous establishments, potentially masking even larger
within-industry variation. The nested CES production function imposes strong functional
form restrictions, and perfect competition assumptions abstract from market power
and wage-setting frictions. Estimation challenges include noisy likelihood surfaces,
convergence sensitivity (4 of 32 industries failed), and lack of formal standard errors
preventing statistical inference. Results are specific to the U.S. over 1988-2018 and
may not generalize to other countries or future periods with artificial intelligence and
automation.

Future research should extend this analysis in several directions. First, more
disaggregated estimation at establishment, firm, or occupation levels could test whether
tirm-level CSC contributes to between-firm inequality growth. Second, dynamic
extensions with endogenous technology adoption could examine feedback loops between
skill supply and CSC strength. Third, international comparisons could test whether CSC
is universal or shaped by institutions and policies. Fourth, distinguishing traditional
equipment from information technology and Al/robotics could provide insight into how
future technologies affect inequality. Fifth, welfare analysis quantifying efficiency-equity
trade-offs could inform optimal policy design varying by industry CSC strength.

The findings of this paper suggest that understanding wage inequality requires
looking beyond aggregate statistics to examine how technological change affects different
industries in systematically different ways. The substantial heterogeneity in capital-skill
complementarity across sectors—with some industries showing demand effects 500 times
larger than supply effects—implies that inequality is not a uniform phenomenon but
rather the result of diverse sectoral transformations driven by distinct technology-skill
interactions. For workers, this means that the returns to education depend critically
on which industries they enter and how those industries” technologies evolve. For
policymakers, it suggests that effective inequality policy must be informed by granular
understanding of how capital and skills interact across the industrial landscape, rather
than assuming all sectors experience technological change in the same way. The era
of rising inequality driven by capital-skill complementarity may not be over, but its
future trajectory will depend on whether new technologies like artificial intelligence
complement or substitute for the skilled workers who have benefited from information
technology over the past four decades.
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A  Ommited Derivations

Recall that the production function is given by:

—u

G (ke ket 5t) = K, (quuf + (1= ) (AKE, + (1= 2)sf) ) (16)
Where u; = {'hi and s; = ¢ihi. Relevant first-order conditions are:
[ %—1
s e = (1= )kt (uf + (1= ) (A, + (1= A)sF)7) g™ a7
o\ o 1
) wg = (1= a) (1= )(1 = A) (juf + (1= o) (AR, + (1= A)sf)?)
x (AKS + (1= A)sf)e tsf Ty (18)

Dividing (18) by (17) we obtain the expression for the skill premium:

1—A)(1-— _ c_1 o138
AN 401048, 4+ (1= ey 4E
Huy &

(5 ) () ()

To obtain a version of skill premium in terms of growth rates of the log-linearized version

wt =

of equation (19), start by writing a continuous time version of Equation (7):

Inw(t) = A”;p (lpsé‘;)(;z(t))p +(1-0)ln (Z:g))) +oln (;DZ((’;))) (20)

Start with the first term of the sum in the RHS:
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The next two terms in the sum are very similar, for the first term we have:

2 (n(50)) = 2 tmie —morn) = S B0 g g

Differentiating the LHS we get:

ad _W(t)
E(lnw(t)) - w(t) = 8wy

B Data Construction

B.1 Labor Inputs and Wage Rates

I include all observations excluding agents younger than 16 or older than 70, unpaid
family workers, those working in the military, those who report working less than 40
weeks a year and/or 30 hours a week, those with hourly wages below half of the
minimum federal wage rate, those that did not report their education level and self-
employed workers.

For each person, I record their characteristics age, sex, and race. Their employment
statistics: employment status (empstat), class of worker (classwly), weeks worked last
year (wksworkl and wkswork2), usual hours worked per week last year (uhrsworkly) and
hours work last week (ahrsworkt). Their income: total wage and salary income incwage
and the CPS personal supplement weights: asecwt. Following IPUMS guidance, I adjust
survey weights for the 2014 sample to account for the CPS redesign that year, which split
respondents between old and new survey methods.’

To homogenize the data I create the following groups based on individual
characteristics, age is divided into 11 five-year groups: 16 — 20, 21 — 25, 26 — 30,
31 — 35,36 — 40,41 — 45,46 — 50 race is divided into white black and others. Sex is divided
into, male and female and education is divided into four groups without high school, high
school, some college and college graduates, and beyond. Then, each person is assigned
to one of 264 groups created by age, race, sex, and skill (education).

Table 15 reports the sample selection criteria and the resulting sample sizes at each
stage of filtering. The final estimation sample contains approximately 55% of the raw
CPS extract observations.

For the period between 1963 to 1975 the variables weeks worked last year (wkswork1)
and hours worked last year (uhrsworkly) are not recorded in CPS, so I impute these

9See IPUMS CPS 2014 Redesign Documentation:
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Table 15: CPS Sample Selection

Selection Criterion Observations % of Original
Raw CPS extract (1963-2018) 4,358,292 100.0
Valid survey weights 4,300,000 98.7
Wage /salary workers 2,800,000 64.3
Exclude military 2,770,000 63.5
Full-year workers (>40 weeks) 2,600,000 59.7
Full-time workers (>30 hrs/week) 2,450,000 56.2
Working age (16-70) 2,420,000 55.5
Education reported 2,410,000 55.3
Wage floor satisfied 2,400,000 55.1
Final estimation sample 2,400,000 55.1

values using demographic group averages from the post-1975 period. Specifically, for
wksworkl I use the variable wkswork?2 that consists of intervals of hours worked, and then
perform the substitution with the average hours worked by individuals in the same group
reporting the same value of wkswork?2 for the 1976-1992 period. For uhrsworkly I used
hours worked last week (ahrsworkt) when available as a proxy, and otherwise impute
using the demographic group average from the 1976-1992 period. This imputation is
necessary to construct consistent time series but may introduce measurement error in the
early period.
For every individual I create the following variables:

* {;; the hours worked by individual i in year ¢, is the product of hours worked per

week times weeks worked that year.

* w;; the hourly wage of individual i in year ¢, obtained by dividing yearly wage

income by hours worked in year ¢.

Let G be the collection of all groups we can calculate the weight of each group as
Mgt = Licg Mit Where pi;; is the CPS weight of the individual. Average hours worked for
each group g € G:

Yicg lit—1Mit
lop-1= ——
Hgt
and wages:
Yicg Wit—1Hig
NWgt 1= ———"-
Hgt

Finally to obtain skilled and unskilled series labor input and wage series I partitioned
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the set G in two subsets (S,U) based on education (college graduates and non-college
graduates). Let H, L indicate the group type, then the total labor input is:

t 1= Eggt 1Hg,tWge,80
geu

t 1= ngt 1Hg,tWge,80
ges

w80 is the wage of the group in 1980 and is used as a scaling factor. Then wages for each
skill level are obtained as:

 YgeuWgi—1lgi—1pg,

wH | =
t—1 u
Lt—l
WS . — deS wg,t—leg,t—lﬂg,t
t—1 — LS )
t_
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Industry Codes

Industry Code KLEMS Code BEA

Farms 111CA 110c

Forestry, fishing, and related activities 113FF 113f
Oil and gas extraction 211 2110

Mining, except oil and gas 212 2120

Support activities for mining 213 2130

Utilities 22 2200

Construction 23 2300

Wood products 321 3210

Nonmetallic mineral products 327 3270

Primary metals 331 3310

Fabricated metal products 332 3320

Machinery 333 3330

Computer and electronic products 334 3340
Electrical equipment, appliances, and components 335 3350
Motor vehicles, bodies and trailers, and parts 3361MV 336m
Other transportation equipment 33640T 3360
Furniture and related products 337 3370
Miscellaneous manufacturing 339 338a

Food and beverage and tobacco products 311FT 311a
Textile mills and textile product mills 313TT 313t

Table 16: Industry codes and descriptions (Part 1).
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Industry Code KLEMS

Code BEA

Apparel and leather and allied products

Paper products

Printing and related support activities

Petroleum and coal products

Chemical products

Plastics and rubber products

Wholesale trade

Retail trade

Air transportation

Water transportation

Truck transportation

Transit and ground passenger transportation

Pipeline transportation

Other transportation and support activities

Warehousing and storage

Motion picture and sound recording industries

Broadcasting and telecommunications

Securities, commodity contracts, and investments

Insurance carriers and related activities

Funds, trusts, and other financial vehicles

Real estate

Rental and leasing services and lessors of intangible assets

Legal services

Computer systems design and related services
Miscellaneous professional, scientific, and technical services 5

Management of companies and enterprises

Administrative and support services

Waste management and remediation services

315AL
322
323
324
325
326

42
44RT
481
483
484
485
486
4870S
493
512
513
523
524
525
531
532RL
5411
5415
4120P
55

561
562

315a
3220
3230
3240
3250
3260
4200
44RT
4810
4830
4840
4850
4860
4875
4930
5120
5130
5230
5240
5250
5310
5320
5411
5415
5412
5500
5610
5620

Table 17: Industry codes and descriptions (Part 2).
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Industry Code KLEMS Code BEA

Educational services 61 6100

Ambulatory health care services 621 6210

Social assistance 624 6240

Performing arts, spectator sports, museums, and related activities 711AS 711a
Amusements, gambling, and recreation industries 713 7130
Accommodation 721 7210

Food services and drinking places 722 7220

Other services, except government 81 8100

Hospitals and nursing and residential care facilities 622HO 622h, 6230

Rail transportation 482 4820

Federal Reserve banks, credit intermediation, and related activities 521CI 5210,5220

Table 18: Industry codes and descriptions (Part 3).

D Industry Estimates and Fit

This appendix contains the point estimates and the model fit for each industry.
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Farms 0.494 -0.92 0.521 1.978
Forestry, fishing, and related activities -0.571 -0.555 0.643 0.636
Oil and gas extraction 0.98 0.999 1667.139 48.829
Mining, except oil and gas 0.446 -0.567 0.638 1.804
Support activities for mining 0.322 -0.941 0.515 1.476
Utilities 0.12 -0.094 0.914 1.136
Construction 0.971 -0.388 0.72 35.047
Wood products 0.837 0.928 13.957 6.145
Nonmetallic mineral products 0.631 0.452 1.824 2.709
Primary metals 0.97 0.99 95.828 33.64
Fabricated metal products 0.876 0.29 1.409 8.081
Machinery 0.522 0.376 1.601 2.092
Computer and electronic products 0.86 0.103 1.115 7.144
Electrical equipment, appliances, and components 0.987 -1.213 0.452 79.633
Motor vehicles, bodies and trailers, and parts 0.988 0.6 2.502 85.69
Other transportation equipment 0.353 -0.832 0.546 1.546
Furniture and related products 0.397 -0.908 0.524 1.658
Miscellaneous manufacturing 0.988 0.692 3.244 84.834
Food and beverage and tobacco products -1.309 -1.377 0.421 0.433
Textile mills and textile product mills 0.994 -1.457 0.407 160.175
Apparel and leather and allied products 0.723 0.997 293.318 3.605
Paper products 0.531 -0.86 0.538 2.13
Printing and related support activities 0.998 0.997 376.476 439.299
Petroleum and coal products 0.31 -0.687 0.593 1.45
Chemical products 0.481 -0.762 0.567 1.929
Plastics and rubber products 0.648 0.319 1.469 2.844
Wholesale trade 0.39 -0.548 0.646 1.64
Retail trade 0.575 -0.457 0.686 2.354
Air transportation 0.454 -0.995 0.501 1.832
Water transportation 0.463 0.643 2.803 1.862
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Truck transportation 0.997 -0.612 0.62 308.14
Transit and ground passenger transportation 0.785 0.456 1.838 4.643
Other transportation and support activities 0.6 -0.695 0.59 2.502
Warehousing and storage 0.963 0.716 3.517 26.821
Motion picture and sound recording industries 0.355 -0.559 0.642 1.549
Broadcasting and telecommunications 0.386 -0.725 0.58 1.628
Insurance carriers and related activities 0.644 -0.761 0.568 2.808
Funds, trusts, and other financial vehicles -3.748 0.437 1.775 0.211
Real estate 0.321 -0.719 0.582 1.472
Rental and leasing services and lessors of intangible assets 0.554 0.042 1.043 2.242
Legal services 1.0 0.112 1.126 2118.363
Computer systems design and related services 0.895 -0.639 0.61 9.555
Miscellaneous professional, scientific, and technical services 0.657 -0.903 0.525 2915
Management of companies and enterprises 0.559 -1.254 0.444 2.267
Waste management and remediation services 0.59 -0.718 0.582 2.441
Educational services 0.231 -1.014 0.497 1.3
Ambulatory health care services 0.678 0.963 27.286 3.101
Social assistance 0.322 -1.393 0.418 1.474
Accommodation 0.569 0.279 1.387 2.323
Food services and drinking places 0.316 -0.913 0.523 1.463
Other services, except government 0.996 0.444 1.799 224.656
Hospitals and nursing and residential care facilities 0.708 -2.229 0.31 3.427
Rail transportation 0.991 0.99 96.838 114.803
Federal Reserve banks, credit intermediation, and related activities 0.38 -0.604 0.624 1.614
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Transit and ground passenger transportation
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Food services and drinking places

0.8

0.7

0.6

0.5

1.0

0.9

0.8

0.7

0.6

0.5

— -Model 035 L —-Model / — -Model I\ N
_—Data — Data 7/ 1.8 | —Data
0.30
1.6
- = 0.25
14
0.20
12
\ \ \ 0.15 |
1990 1995 2000 2005 2010 2015
Other services, except government
— -Model 3.00
[ — Data 0.5 /
~ 2.75
0.4 2.50
-~ 2.25
0.3
2.00
0.2 175
150 -\/W\/\,
C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1090 1995 2000 2005 2010 2015 1090 1995 2000 2005 2010 2015 1090 1995 2000 2005 2010 2015

95



	Introduction
	Literature Review

	Model
	Skill Premium

	Data
	Data Sources Overview
	Capital
	Labor
	Labor Income Shares
	Data Description
	Aggregate Trends
	Industry Trends


	Estimation
	Standard Errors and Inference

	Results
	KORV Replication
	Estimation by Industry

	Discussion
	Economic Mechanisms
	Policy Implications
	Limitations and Caveats
	Comparison with Related Literature
	Future Research

	Conclusion
	Ommited Derivations
	Data Construction
	Labor Inputs and Wage Rates

	Industry Codes
	Industry Estimates and Fit

