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Abstract

We find that preference shifts, not technology, explain the post-pandemic

persistence of remote work. We use a structural equilibrium search model, estimated

on 2019 and 2024 microdata, to decompose the 9.1 percentage point rise in remote

work. Our decomposition reveals that a "Great Re-valuation" of flexibility by workers

accounts for 60% of the increase. Technological improvements (e.g., Zoom, Slack)

explain 30%, while changes in skill composition explain 10%. We identify these

channels using a novel continuous teleworkability index, which moves beyond binary

classifications to capture hybrid arrangements. Our model shows that baseline remote

productivity rose 46%, but workers’ valuation of remote work increased significantly.

Counterfactuals confirm preferences are the primary driver: absent this preference

shift, remote work would have risen by only 3.8 percentage points, less than half of

the observed increase.

*Valdes-Bobes: University of Wisconsin–Madison. Email: valdsbobes@wisc.edu. Lukianova: University
of Wisconsin–Madison. Email: lukianova@wisc.edu.
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1 Introduction

Why does remote work remain elevated five years after the pandemic [Barrero et al.,
2021]? Conventional wisdom points to technological breakthroughs—Zoom, Slack, cloud
infrastructure—that permanently closed the productivity gap between home and office
[Davis et al., 2024]. We show this misses the bigger picture. Using a structural model
estimated on microdata from 2019 and 2024, we find that shifts in worker preferences, not
technology improvements, explain most of the persistent increase in remote work. This
challenges the technology-focused narrative dominating policy discussions and reshapes
how we think about the future of work.

Our research question is direct: How much of the increase in remote work came
from workers valuing flexibility more versus technology making remote work more
productive? We answer this by estimating a structural equilibrium model separately
for each period and then constructing counterfactuals that isolate each channel. The
decomposition reveals a striking imbalance. Starting from a baseline of 6.8% remote
work in 2019, the share rose to 15.9% by 2024. Our estimates show that preference shifts
alone would have driven remote work to 12.1%—capturing 58% of the total increase.
Technology improvements, by contrast, would have produced only 9.5%, accounting for
30% of the change. The remaining 10% reflects compositional shifts in the workforce.
Understanding why requires unpacking what we mean by preferences and technology.

The preference channel captures how workers learned about their own valuations
during forced mass adoption [Aksoy et al., 2022]. Before 2020, most workers had
never experienced sustained remote work. The pandemic served as a giant natural
experiment that revealed true preferences—many discovered they valued flexibility far
more than previously believed, while others learned they needed in-person interaction.
The technology channel, meanwhile, reflects genuine productivity improvements: better
videoconferencing, refined cloud collaboration tools, and organizational learning about
managing distributed teams [Davis et al., 2024]. These channels interact through
workplace arrangements. Workers and firms don’t just negotiate wages—they jointly
choose how much time to spend remote versus in-person, trading off productivity
against amenity value [Mas and Pallais, 2017]. This joint determination means both
channels affect who works where and under what arrangements, making their separation
empirically demanding. Recent work by Bagga et al. [2025] examines how amenity
shocks drive the dynamic adjustment path—the sustained labor reallocation, surge in
vacancies, and vertical Beveridge curve loop following the pandemic. Our focus differs:
we decompose the equilibrium level shift to quantify how much preferences versus
technology contributed. Despite different approaches, we reach the same conclusion
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about preference dominance.
We combine three data sources to measure both outcomes and underlying

characteristics. The Current Population Survey provides labor market outcomes and
remote work practices for 2019 and 2024. The Occupational Information Network
supplies detailed task content and skill requirements for hundreds of occupations. The
Bureau of Labor Statistics Occupational Requirements Survey gives us ground truth on
which jobs can feasibly be done remotely. Our analysis focuses on employed wage
workers aged 25 to 64. What we lack is equally important: we observe two cross-sectional
snapshots, not individual transitions, which means we capture equilibrium shifts but not
the adjustment paths that got us there.

Separating preferences from technology requires measuring how suitable different
jobs are for remote work. We construct a continuous teleworkability index trained on
objective survey data using machine learning. Previous research classified occupations
as simply “teleworkable” or “not teleworkable” [Dingel and Neiman, 2020]—a binary
split that obscures crucial variation [Langemeier and Tito, 2022]. A software engineer
and a customer service representative might both be teleworkable, yet their remote
productivity differs fundamentally. The engineer might lose collaborative synergies
when remote; the representative might not. Our continuous measure captures these
gradations, revealing that high-skilled workers systematically sort into highly-amenable
occupations—a pattern that proves essential for identifying how skill and technology
complement each other.

Four empirical patterns motivate our structural approach. First, remote work rose
sharply from 6.8% to 15.9% between 2019 and 2024—a 134% relative increase. Second,
a steep educational gradient persists: college graduates work in far more amenable
occupations, yet this gap remained remarkably stable through the pandemic. Third,
we document persistent wage premiums even after controlling for education and
demographics—a concave premium for occupational amenability and an inverted-U
premium for actual remote practice that peaks at hybrid arrangements. Fourth, the
structure of these premiums shifted dramatically: pre-pandemic markets priced potential
for remote work, while post-pandemic markets price actual practice. These facts pose
sharp puzzles for simple models.

Each fact demands a specific modeling ingredient. The persistent wage premium
for job amenability, even controlling for observables, reveals sorting on unobserved
worker skill—high-ability workers must be matching to high-amenability jobs for reasons
standard human capital can’t explain. The prevalence of hybrid work, especially the
inverted-U wage profile peaking around three days per week remote, rules out simple
corner solutions and demands a production technology with genuine interior optima.

3



The massive dispersion in arrangements among workers in identical occupations with
identical education proves that match-specific heterogeneity matters—some workers
will commute two hours to avoid remote work while others in the same job work
fully remote. Hybrid arrangements deserve special emphasis: they’re not transitional
compromises but optimal steady-state choices that balance collaborative productivity
gains against flexibility value. Together, these facts require a model with three-
dimensional heterogeneity, non-linear production, and explicit bargaining over both
wages and arrangements.

We build a search and matching model where workers and firms meet randomly
but match selectively based on mutual gains from trade. Three types of heterogeneity
drive the equilibrium. Workers differ in skill—their baseline productivity in any
match. Firms differ in technology—how suitable their jobs are for remote work,
determined by occupation and organizational infrastructure. Individual matches differ
in preferences—idiosyncratic tastes for flexibility that get revealed only after the match
forms. The production side features two key mechanisms. Remote and in-person
work can substitute, but with diminishing returns, which naturally generates hybrid
optima. Worker skill and job technology complement each other, so high-skill workers are
substantially more productive in high-amenability jobs—this drives positive assortative
matching. On the bargaining side, matched pairs jointly choose both wage and work
arrangement to maximize their total surplus [Mas and Pallais, 2017], with the wage
serving to split the gains and the arrangement balancing productivity against amenity
value.

We estimate all model parameters separately for 2019 and 2024, which lets us observe
which deep structural features actually changed. The estimation uses moment-matching
methods targeting key empirical patterns. Preference parameters—the average taste
for flexibility, the dispersion in tastes, and how amenity value curves with remote
intensity—come from the observed distribution of work arrangements and how wages
vary with actual remote practice. Technology parameters—baseline remote productivity,
how worker skill and job technology interact, and how substitutable remote and in-
person work are—come from sorting patterns across occupations and wage premiums
for job amenability. Estimating both periods separately is crucial: we can’t just assume
technology improved and back out preferences, or vice versa. By letting the data speak
about both channels simultaneously, we avoid prejudging the answer.

The counterfactual decomposition reveals the dominance of preferences. If only
preferences had changed while holding technology fixed at 2019 levels, remote work
would have reached 12.1%—a 5.3 percentage point increase that captures 58% of the
actual 9.1 point rise. If only technology had improved while holding preferences constant,
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remote work would have climbed to just 9.5%—a 2.7 point gain representing 30% of the
total shift. Compositional changes in workforce demographics account for the remaining
10%. Technology still matters substantially—we estimate a 46% increase in baseline
remote productivity, validating stories about learning-by-doing and network effects. But
preferences changed even more.

Preference dominance has important implications. Because the structural shift
occurred primarily in workers’ valuations rather than productive capabilities, technology
alone cannot account for the persistence we observe. Our findings explain a broader
labor market transformation we call the Great Re-Valuation [Aksoy et al., 2022]: markets
fundamentally shifted from pricing the scarce option of remote work before the pandemic
to pricing actual practice afterward. The flattening premium for potential and steepening
premium for practice reflect this maturation—what was once an elite perk became
a standard negotiated amenity. This amenity shift has contributed to broader wage
dynamics in the post-pandemic labor market [Barrero et al., 2024].

The remainder of the paper proceeds as follows. Section 2 reviews related research
on remote work trends, compensating differentials, and equilibrium sorting. Section 3
constructs the teleworkability index and documents key facts. Section 4 presents
the structural model. Section 6 describes estimation and identification. Section 6
reports parameters, model fit, and the main decomposition. Section 7 concludes with
implications and limitations.

2 Related Literature

Our work speaks to three interconnected literatures: the economics of remote work
persistence [see Lee, 2023, for a recent review], the theory and empirics of compensating
wage differentials, and structural labor market models with heterogeneous agents.
Our analysis provides a quantitative, equilibrium-based decomposition of the forces
driving the persistent rise in remote work. We find that preference shifts account for
60% of the increase, technology improvements 30%, and composition changes 10%.
This preference-dominant finding contrasts with alternative explanations emphasizing
institutional constraints [Adrjan et al., 2023] or compositional sorting forces [Braesemann
et al., 2022].

The intellectual foundation for understanding post-pandemic persistence is Barrero
et al. [2021], who document that remote work will remain elevated and identify five
mechanisms: better-than-expected experiences, investments in infrastructure, diminished
stigma, contagion concerns, and technological innovations. We formalize these
mechanisms through preference and technology channels in a structural model, moving
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beyond survey-based stated preferences to provide revealed preference evidence from
observed wages, remote work shares, and sorting patterns. This quantifies that preference
shifts dominate, providing market-based validation for the Barrero et al. [2021] emphasis
on updated worker attitudes. An alternative technology-centric view by Davis et al.
[2024] argues that mass adoption unlocked latent productivity through network effects.
Our estimation finds a remarkably similar 46% increase in baseline remote productivity,
confirming this technology channel is significant. However, by simultaneously estimating
both channels, we show that while technological improvements were necessary,
preference shifts were dominant—absent technology changes, preferences alone would
have driven nearly two-thirds of the observed increase.

Survey evidence from Aksoy et al. [2022] documents that stated preferences for
remote work increased during the pandemic, particularly for those with direct exposure.
Our structural estimates provide the revealed-preference foundation for this “Great Re-
Valuation,” showing a 12% increase in the average taste for flexibility, a 30% increase in
the dispersion of tastes across workers, and a 35% decrease in the curvature of amenity
value with respect to remote intensity. These changes explain not just higher average
remote work but also increased heterogeneity and hybrid arrangements. Althoff et al.
[2022] offer an alternative equilibrium selection framework where the pandemic pushed
cities between equilibria with stable parameters. Our approach differs fundamentally:
we estimate that structural parameters themselves shifted, better explaining within-
occupation heterogeneity and systematic wage changes.

Concurrent work by Bagga et al. [2025] explores post-pandemic labor markets through
job amenities, developing a frictional search model to explain the adjustment path
following the pandemic. They find that an aggregate amenity shock—workers placing
higher value on work-from-home arrangements—drives sustained labor reallocation,
explaining the rise in job-to-job transitions, the surge in vacancies, the fall in match
efficiency, and the Beveridge curve’s vertical loop. Their calibrated model successfully
accounts for cross-sectoral patterns of vacancies, quit rates, job-filling rates, and wages
during the recovery period. Our work is complementary but distinct in focus: while
Bagga et al. [2025] study the dynamic adjustment path using time-series variation to
infer aggregate shocks, we decompose the equilibrium level shift between 2019-2024
into preference versus technology channels using cross-sectional microdata. Despite
methodological differences, we reach the same qualitative conclusion—preference shifts
dominate technological improvements in explaining remote work persistence. Their
finding that amenity shocks drive labor market dynamics validates our quantitative
result that preferences account for 60% of the increase, while our explicit separation
of preference and technology parameters provides the structural foundation for their
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aggregate shock interpretation.
Our analysis of remote work as a job amenity builds on the broader literature

valuing working conditions [Maestas et al., 2023] and specifically on Mas and Pallais
[2017], who estimate workers willing to forgo 8% of wages for work-from-home options
pre-pandemic. We adopt the same framework but provide post-pandemic general
equilibrium valuations. Recent evidence suggests dramatic increases: Cullen et al. [2025]
find tech workers willing to forgo 25% of compensation, three times the pre-pandemic
benchmark. Other post-pandemic estimates find similar, though varied, valuations: Hsu
and Tambe [2021] estimate a 7% differential in startup markets, while Lewandowski et al.
[2025] find valuation gaps in Poland as high as 24.6% for fully remote work. At the macro
level, Barrero et al. [2024] estimate this amenity shift has contributed to a 2.0 percentage
point moderation in aggregate wage growth.

Our structural approach contributes nuance by estimating the full preference
distribution—the 30% increase in dispersion of tastes explains the coexistence of diverse
arrangements, as more workers intensely prefer remote work while others strongly prefer
the office. Our most novel empirical contribution documents a structural shift in wage
premiums: pre-pandemic markets priced teleworkability potential with steep premiums
reflecting scarcity, while post-pandemic markets price actual practice with an inverted-U
profile peaking at around 60% remote work (roughly three days per week). This shift from
pricing potential to practice reveals market-wide learning about optimal arrangements.
A central identification challenge is separating compensating differentials from worker
selection. Emanuel and Harrington [2024] use office closures as a natural experiment,
finding two-thirds of the productivity gap is selection. We employ a complementary
structural strategy where selection parameters (complementarity between worker skill
and job technology) are identified by sorting moments, while preference parameters
are identified by dispersion in remote work shares and wage profiles, enabling general
equilibrium welfare analysis.

Methodologically, we advance teleworkability measurement by building on Dingel
and Neiman [2020]’s binary classification. Our approach is motivated by Langemeier
and Tito [2022], who demonstrate that such binary "no physical presence" measures show
minimal historical change, while communications-based continuous measures (like the
one we develop) rose substantially, highlighting the need to capture gradations in remote
work feasibility. Our innovations are a continuous index ranging from zero to one,
essential for modeling hybrid work and flexible production functions, and a data-driven
machine learning approach trained on objective BLS data achieving superior predictive
performance.

Our structural framework builds on the standard Diamond-Mortensen-Pissarides
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search and matching framework with wage bargaining, incorporating amenities
following the hedonic wage framework of Rosen [1986] with recent treatments in
Morchio and Moser [2024] and Albrecht et al. [2019]. We introduce multi-dimensional
heterogeneity—worker skill, firm technology for remote work, and idiosyncratic taste
for flexibility—to simultaneously explain systematic sorting of high-skill workers to
high-teleworkability jobs and within-match dispersion in arrangements. We also
contribute to labor market sorting literature by identifying and quantifying a new
dimension: teleworkability. Our counterfactual shows positive assortative matching on
this dimension is quantitatively important, as random matching would reduce aggregate
remote work by 17%.

3 Data and Stylized Facts

The rise of remote work is a major structural shift in the modern labor market, but
rigorous assessment requires moving beyond anecdote and coarse classifications. This
section establishes the empirical foundation and vocabulary for our analysis in two
parts. First, we introduce a continuous, data-driven index of an occupation’s intrinsic
amenability to remote work or teleworkability, we will denote as ψ. We explain how we
built it, check that it works, and use it to map out which jobs in the U.S. can actually be
done remotely. Second, using this high-resolution lens, we document a set of stylized
facts that reveal three core empirical puzzles: (i) a persistent, concave wage premium
for remote-work potential, even after controlling for observable worker and occupation
characteristics; (ii) the widespread prevalence of hybrid work arrangements that defy
simple corner-solution predictions; and (iii) substantial dispersion in work arrangements
among observationally identical workers within the same job. These puzzles motivate the
structural sorting model with heterogeneous agents developed in the sections that follow.

3.1 Data Sources and Sample Construction

Our empirical analysis combines several data sources, each playing a specific role in
building the teleworkability index and understanding remote work patterns. The Current
Population Survey (CPS)—a monthly household survey conducted by the U.S. Census
Bureau and Bureau of Labor Statistics—serves as our primary data source for labor
market outcomes and remote work patterns. The CPS is representative of the civilian
employed U.S. population. We focus on two time periods: the pre-pandemic baseline
(2018 - 2019), and post-pandemic equilibrium after the labor market had time to adjust
(2023 - 2024) . From CPS we obtain information on employment status, occupation,
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industry, and demographics. Most importantly for our analysis, it includes data on how
much work people actually do remotely (α).

We restrict our sample to employed workers aged 25-64 working for a wage that report
positive wages and usual hours worked per week. We exclude workers bellow 25 years
old to focus on individuals who have completed their education and established careers,
and we exclude those over 64 to avoid retirement dynamics. Within this age range, we
construct four age groups (25-34, 35-44, 45-54, 55-64) to capture lifecycle variation in skill
accumulation and job mobility. Statistics reported in this paper are weighted using CPS
person weights to ensure national representativeness.

To construct the teleworkability index ψ, we combine two additional data sources.
From the Occupational Requirements Survey (ORS), conducted by the Bureau of Labor
Statistics we obtain establishment-level of how many workers can weork remotely at the
occupation level. We consider this survey as the ground truth for training the predictive
model. Second, we use the O*NET database, maintained by the U.S. Department of
Labor, which contains over 200 standardized measures of occupational characteristics,
including task content, work context, skill requirements, and abilities. By training a
machine learning model on the intersection of ORS and O*NET data, we can predict
telework potential for all occupations in the O*NET system and assign these scores to
CPS workers based on their occupation codes.

3.1.1 Measuring Remote Work

An essential variable for this reearch is the share of work performed remotely, denoted
α ∈ [0, 1]. This captures the actual intensity of remote work at the worker level. We
measure α as the fraction of hours worked remotely to total hours worked. For the
period 2022-2024, we measure α directly from newly introduced CPS telework questions.
For the pre-2022 period, when these variables were not yet available, we impute α

using a gradient-boosted regression model trained on Survey of Income and Program
Participation (SIPP) person-month data, with occupation, industry, demographics, and
our teleworkability index ψ as predictive features. The SIPP is uniquely suited for training
our imputation model because it contains detailed remote work information for the pre-
pandemic period, providing a rich baseline for prediction. However, we do not use SIPP
directly for our main analysis because of sample selection concerns: the SIPP’s panel
structure and lower response rates would introduce bias when estimating aggregate labor
market patterns, particularly for high-skilled workers who are overrepresented in remote
work arrangements. The imputation model achieves strong validation performance
(R² = 0.62, correlation with post-2022 ground truth = 0.71), with occupation and ψ as
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the dominant predictors. Full methodological details, including the specific survey
variables used, model hyperparameters, cross-validation results, and robustness checks
are provided in Data Appendix B.3.

3.2 A Novel Tool to Analyze Remote Work Potential

Before presenting the motivating puzzles of our paper, it is essential to establish the
credibility and utility of our key empirical tool: a continuous teleworkability index,
denoted as ψ. In this section we introduce the index, detail its construction and validation,
and then use it to map the distribution of remote work in the labor market.

3.2.1 A Data-Driven Measure of Occupational Technology

We frame the ψ index not merely as a variable, but as a new analytical “lens” that
provides a high-resolution map of the remote work landscape. This lens offers a more
nuanced view than the binary classifications introduced by Dingel and Neiman [2020].
While foundational, a simple “teleworkable” or “not teleworkable” flag necessarily
masks significant heterogeneity. The deficiencies of a binary framework become apparent
when examining three professions: a construction worker, a call-center operator, and a
software engineer. This binary model accurately classifies the construction worker as
non-teleworkable while categorizing both the operator and the engineer as teleworkable.
However, the productivity implications and potential for collaborative synergies differ
profoundly between the latter two. For the call-center operator, remote productivity may
be similar to in-office work. For the software engineer, the collaborative aspect of the job
might be impacted by the lack of face-to-face contact, affecting productivity. A continuous
measure is required to capture these distinctions.

3.2.2 Construction

Our methodology builds upon the foundational work of Dingel and Neiman [2020], who
pioneered the classification of occupations based on their suitability for remote work.
Their approach relies on classifying occupations as either teleworkable or not based on
specific O*NET dimensions. Our methodology advances this work in two crucial ways.

First, as motivated above, we construct a continuous index rather than a binary flag.
This allows ψ to capture the degree to which an occupation is amenable to remote work,
providing a richer, more realistic measure of occupational technology.

Second, our index is data-driven and predictive, not based on subjective, a priori
rules. We train a two-stage machine learning model on objective survey evidence of
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remote work feasibility from the Bureau of Labor Statistics’ Occupational Requirements
Survey (ORS). The ORS is uniquely suited to serve as our ground truth because it assesses
whether telework is permitted as a regular part of performing a job’s “critical function.”
The survey’s definition is nuanced: it codes telework as feasible even if some tasks require
in-person contact (e.g., a lawyer who can do most work from home but must occasionally
appear in court), but not if the core function requires a physical presence (e.g., a delivery
driver). This focus on the intrinsic, regular potential for remote work—rather than ad
hoc or emergency arrangements—provides a direct, objective measure of occupational
amenability that is perfect for training our model. This data-driven approach allows
the model to discover complex, non-linear relationships between a rich set of over
200 occupational characteristics from the O*NET database and an occupation’s intrinsic
potential for remote work.

The model architecture is designed to address the zero-inflated nature of remote work
potential. The first stage employs a Random Forest classifier to distinguish occupations
with any remote work potential (ψ > 0) from those with none (ψ = 0). For occupations
identified as “remote-amenable,” a second-stage Random Forest regressor then estimates
the continuous share of remote-workable jobs. By training this model on the intersection
of the ORS and O*NET datasets, we can identify the most predictive characteristics
of remote work suitability. The trained model is then used to impute a remote work
potential score for all occupations in the O*NET database. The final output is the
comprehensive index, ψ ∈ [0, 1], representing the predicted fraction of jobs within an
occupation that are intrinsically suitable for remote work.

3.2.3 Validation

To move the index from a “black box” to an intuitive and credible measure, it is vital to
demonstrate that it captures a meaningful economic concept. This validation proceeds in
three steps: assessing the model’s predictive accuracy, interpreting its key drivers, and
examining the real-world occupations it identifies at the extremes.

First, we evaluate the predictive performance of the two-stage model on a held-out test
set to ensure its technical robustness. The first-stage classifier exhibits high performance,
attaining an F1-score of 0.948. This high score is driven by an excellent recall of 0.994,
indicating the model successfully identifies nearly all true teleworkable occupations, and
a strong precision of 0.906. For the second-stage regressor, the model explains 56.8% of
the variance in remote work potential (R2 = 0.568). More intuitively, the Mean Absolute
Error (MAE) is a low 0.069, showing that, on average, our model’s prediction for an
occupation’s ψ score deviates from the true value by only 6.9 percentage points. Taken
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together, these strong performance metrics confirm the model’s robust predictive power
and its suitability for creating a credible teleworkability index.

Second, to ensure the model is not just accurate but also intuitive, we examine the
O*NET features that drive its predictions. We analyze the MDI (Mean Decrease in
Impurity) importance for the top features in both the classifier and regressor stages.
This metric quantifies how much each feature contributes to the model’s decision-making
accuracy by measuring how effectively it helps to create pure nodes in the decision trees.

The features identified by the model align strongly with economic intuition. For the
classifier stage, the ability to work remotely at all is primarily determined by the absence
of physical tasks as requirements to perform an occupation. The most important features
are all physical requirements that negatively impact teleworkability, such as Stamina,
Extent Flexibility, and various forms of physical strength. Conversely, an analytical skill
like Written Expression is a positive predictor.

For the regressor stage, among the set of remote amenable jobs, the degree of remote
potential is predicted by a similar trade-off. The model assigns a lower ψ score to
occupations that still require tasks like Handling and Moving Objects or Assisting and
Caring for Others. Conversely, it assigns a higher score to jobs that heavily involve tasks
like Working with Computers and Systems Analysis. This confirms that our index is not
a statistical black box but is capturing a meaningful economic concept of what makes a
job technologically suited for remote work.

Finally, a review of occupations with the highest and lowest ψ scores serves as a
powerful real-world validity check. Our index correctly identifies knowledge-intensive
roles like lawyers, marketing managers, and financial specialists at the top of the
distribution. Conversely, manual or service-based roles requiring physical presence, such
as construction workers, assemblers, and food service workers, are correctly identified as
having zero potential for remote work.

3.3 The Uneven Terrain of the Modern Labor Market

Next we use our index ψ to paint a broad-strokes picture of the labor market.
The central themes that emerge are the scarcity of high-amenability jobs and the
powerful concentration of these jobs among specific workers and industries. This
descriptive groundwork is not merely background information; it establishes the
necessary preconditions for our subsequent puzzles to be economically meaningful. By
first establishing that high remote-work potential is scarce and unequally distributed, we
highlight the importance of a model for understanding how it is allocated and priced in
equilibrium.

12



Figure 1: Proportion of Workers by Remote Work Amenability

Year
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Note: This figure shows the proportion of workers employed in occupations with different levels of
teleworkability from 2019 to 2024. The extensive margin reveals that approximately 45% of the workforce
is consistently employed in occupations with no intrinsic potential for remote work (ψ = 0), highlighting a
persistent "remote work desert" in the U.S. labor market.

3.3.1 The Extensive and Intensive Margins

Evidence reveals a “remote work desert.” As shown in Figure 1, a large and stable fraction
of the U.S. workforce is employed in occupations with no intrinsic potential for remote
work (ψ = 0). This figure, showing the extensive margin, highlights that the portion of
employment in non-teleworkable occupations has been constant around 45% from 2019
to 2024.

For readers seeking more detail on the educational stratification of remote work,
a three-panel figure in the appendix presents (i) remote work adoption (α), (ii)
teleworkability potential (ψ), and (iii) the implementation gap (ψ− α) by education level;
see Appendix Figure 11.

Furthermore, for the subset of jobs with any remote potential (ψ > 0), the intensive
margin reveals that high-amenability is rare. Figure 2 plots the employment-weighted
distribution of the ψ index, which is heavily skewed toward lower values. This reinforces
the core idea that high-amenability jobs (e.g., ψ > 0.5) are the exception, not the rule. This
scarcity is consistent feature of the labor market in pre and post pandemic periods, and is
a key driver of the sorting patterns we document next.
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Figure 2: Distribution of Remote Work Potential for Amenable Jobs

Year
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Note: This figure shows the employment-weighted distribution of the teleworkability index (ψ) for jobs with
any remote work potential (ψ > 0). The distribution is heavily skewed toward lower values, demonstrating
that high-amenability jobs (e.g., ψ > 0.5) are rare. This scarcity persists across both pre-pandemic and post-
pandemic periods.

3.3.2 The Sorting Landscape

Finally, descriptive evidence illustrates the powerful sorting of workers into these scarce,
high-ψ jobs. We observe a dramatic educational gradient: while 71.2% of workers
with a high school education or less are concentrated in the lowest quartile of remote
work potential, 40.7% of college-educated workers are in the highest quartile. This is
complemented by strong industry concentration, with Finance and Professional Services
overwhelmingly represented in high-ψ occupations.

The sorting of workers into high-teleworkability jobs is not merely a compositional
effect but reflects a systematic matching process. Figure 3 presents direct evidence
of this relationship through a binned scatter plot of actual remote work share (α)
against occupational teleworkability (ψ). The tight, upward-sloping relationship—with
a correlation of 0.68—demonstrates that workers in high-ψ occupations are significantly
more likely to work remotely. Importantly, the relationship strengthened from 2019 to
2024, with the slope increasing from 0.38 to 0.73, indicating that the pandemic accelerated
the alignment between technological potential and actual practice.

This clear occupational divide drives the powerful educational sorting we document,
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Figure 3: The Sorting of Remote Work: Practice Follows Potential
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Note: Binned scatter plot showing the relationship between actual remote work share (α) and occupational
teleworkability (ψ) across all years in the sample. Each point represents an occupation, with bubble size
proportional to employment. The tight, upward-sloping relationship (correlation = 0.68) demonstrates
strong occupational sorting: high-teleworkability occupations (e.g., Software Developers, Lawyers) exhibit
high remote work shares, while low-teleworkability occupations (e.g., Retail Sales Workers, Transportation
Managers) remain predominantly in-person. Selected occupations are labeled to illustrate the range.

as illustrated in Figure 4. By plotting the average teleworkability index (ψ) by educational
attainment from 2019 to 2024 (Panel A) we illustrate two crucial facts. First, a clear and
persistent educational hierarchy exists: post-graduates consistently work in occupations
with the highest average ψ, followed by those with bachelor’s degrees, some college,
and high school degrees. Second, these average levels are remarkably stable, indicating
that the pandemic did not fundamentally alter which educational groups have access
to remote-amenable occupations, but rather accelerated the use of that pre-existing
potential. This descriptive fact of strong assortative matching reveals a striking contrast
when compared to actual remote work adoption patterns shown in Panel B. While
the technological capacity for remote work remained largely unchanged through the
pandemic, the actual utilization of this capacity saw substantial increases, particularly
among more educated workers. This divergence between stable potential and changing
practice suggests that the rise in remote work cannot be explained by technological
changes alone, serving as the natural jumping-off point for our first motivating puzzle.

For readers seeking more detail, a three-panel appendix figure presents (i) remote
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Figure 4: Comparing Potential vs. Actual Remote Work by Education Level
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Note: Panel A shows the remarkably stable distribution of teleworkability potential (ψ) across education
groups from 2019 to 2024. In contrast, Panel B reveals the dramatic increase in actual remote work adoption
(α) over the same period, particularly among more educated workers. This divergence between stable
technological potential and changing practice provides strong evidence that the rise in remote work reflects
more than just technological adaptation.

work adoption (α), (ii) teleworkability potential (ψ), and (iii) the implementation gap
(ψ− α) by education level; see Appendix Figure 11.

3.4 Three Empirical Puzzles

The sorting patterns documented above raise questions that simple models cannot easily
answer. We organize these questions into two core empirical puzzles. First, why do we
observe persistent wage premiums for occupational teleworkability even after controlling
for education and other observable worker characteristics? This pattern suggests that
unobserved skills matter for sorting into remote-amenable jobs. Second, how did the
structure of these wage premiums change between 2019 and 2024? We show that the
labor market underwent a fundamental shift in how it prices remote work—what we
term a "Great Re-Valuation." Together, these patterns motivate the heterogeneous-agent
sorting model we develop in Section 4.

3.4.1 Why is Remote-Work Potential Priced in the Market?

The sorting of highly educated workers into remote-amenable jobs is a stark descriptive
fact. A simple human capital model would predict that once we control for education and
other observable skills, any wage premium associated with an occupation’s technology
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should disappear. Our first puzzle, therefore, is not simply that sorting occurs, but
that a significant wage premium for an occupation’s remote work potential persists after
accounting for these observable characteristics. This finding creates a challenge for simple
models and points directly toward the importance of sorting on a latent, unobserved skill
dimension, which we label h.

We document this persistent premium through a series of Mincer-style wage
regressions. The specification progressively introduces controls to isolate the relationship
between our teleworkability index, ψ and log wages, including a quadratic term to
capture potential non-linearities. The goal of this exercise is not to claim a causal “return
to ψ,” but to provide evidence consistent with a sorting mechanism where higher-skilled
workers—both observably and unobservably—sort into high-ψ jobs.

The most comprehensive specification, corresponding to Column (5) in the table, is
given by:

log(wi) = β1ψj + β2ψ2
j + X′iΓ + γs + δt + ζo + εi (1)

Where log(wi) is the logarithm of real wages for individual i, ψj is the teleworkability
(or remote amenability) index of their occupation j, Xi is a vector of demographic and
educational controls, and γs, δt, and ζo are full sets of fixed effects for state, year, and
occupation, respectively.

Our wage regressions systematically document the wage premium associated with
teleworkability by progressively adding controls to this specification. The analysis begins
with a large, unconditional correlation. The subsequent addition of demographic controls
and education reduces the magnitude of the coefficient on ψ, indicating that much of
the premium is explained by higher-skilled workers sorting into high-ψ jobs. However,
the premium remains large and statistically significant. Finally, the inclusion of detailed
industry and broad occupation group fixed effects further attenuates the coefficient, yet
it remains positive and significant. This final result is particularly telling, as it reveals
that even within similar occupational categories, a higher potential for remote work
is associated with higher wages, suggesting ψ is a priced job amenity that captures
technological differences not fully explained by standard occupational classifications.

While our regressions establish the existence of the premium, Figure 5 visualizes its
non-linear and concave nature. The binned scatter plot, which shows the relationship
after partialling out a full set of demographic and educational controls, clearly illustrates
that the wage premium flattens out at the highest levels of remote-work potential. This
concavity, captured by the negative and significant coefficient on the squared term (ψ2)

in our regressions, is an important feature that our structural model is designed to
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Figure 5: Non-Linear Wage Premium for Teleworkability
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Note: Binned scatter plot of residual log wages against the residual teleworkability index (ψ), based on
regressions with full demographic and educational controls. The solid red line (quadratic fit) illustrates
the concave relationship: the wage premium associated with an occupation’s remote work potential is
substantial but flattens out at the highest levels of amenability.

rationalize.
A parallel pattern emerges when examining actual remote work practice rather than

potential. Figure 6 presents the relationship between residual log wages and residual
remote work share (α) after partialling out the same demographic and educational
controls. The figure reveals a striking inverted-U shape: wages rise steeply as workers
transition from fully in-person (α = 0) to hybrid arrangements, reaching a peak around
α ≈ 0.6 (roughly 3 days per week remote), before declining for fully remote workers
(α = 1). The quadratic fit achieves an R² of 0.809 with a highly significant negative
coefficient on α2 (-0.120), confirming strong concavity. This pattern suggests that hybrid
arrangements command the highest wage premium, potentially reflecting an optimal
balance between collaborative productivity gains from in-person work and amenity value
from flexibility. The decline at the fully remote margin may indicate either productivity
costs from complete isolation or selection of workers with strong preferences for remote
work who accept lower wages.

This empirical evidence of persistent, concave wage premia for both occupational
remote work potential (ψ) and actual practice (α) is the primary motivation for our

18



Figure 6: Wage Premium for Remote Work Practice
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Note: Binned scatter plot of residual log wages against residual remote work share (α), controlling for
demographics and education. The inverted-U relationship peaks at α ≈ 0.6, indicating that hybrid
arrangements (3 days/week remote) command the highest wage premium. The quadratic fit (R² = 0.809)
captures significant concavity, with wages declining for fully remote workers.

structural model. The model is explicitly designed to rationalize these facts through two
key mechanisms:

• Positive Assortative Matching: The existence of a premium after controlling for
observables motivates the complementarity between latent worker skill (h) and
occupational technology (ψ).

• Non-Linear Production: The concavity of the premium motivates the use of a CES
production function, which allows for diminishing returns and a flexible, non-linear
relationship between in-person and remote work.

3.4.2 The Great Re-Valuation: A Structural Shift in the Price of Remote Work

Our analysis thus far has established the key relationships in the post-pandemic labor
market. However, our central premise of a “Great Re-Valuation” requires showing that
these relationships have fundamentally changed since before the pandemic. To test this,
we now formally compare the wage premium structures of the pre-pandemic (2018-2019)
and post-pandemic (2023-2024) periods.
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To formally test for a structural change in these relationships, we pool the data from
the pre-pandemic (2018-2019) and post-pandemic (2023-2024) periods and estimate the
following comprehensive wage regression:

log(wi,j,s,t) = (β1αi + β2α2
i ) + (γ1ψj + γ2ψ2

j )

+ δ1(Dpost × αi) + δ2(Dpost × α2
i )

+ η1(Dpost × ψj) + η2(Dpost × ψ2
j )

+ X′iΓ + λt + µs + ζo + εi,j,s,t

(2)

where log(wi,j,s,t) is the log real wage for worker i in occupation j, state s, and year t.
The variable Dpost is an indicator equal to one for the post-pandemic years (2023-2024).
The model includes quadratic terms for both remote work practice (αi) and potential (ψj),
a full vector of individual controls (Xi), and fixed effects for year (λt), state (µs), and
occupation (ζo).

The key parameters of interest are the interaction coefficients (δ1, δ2, η1, η2), which
capture the change in the wage premium profiles between the pre- and post-pandemic
periods. A statistically significant coefficient on these interaction terms provides a formal
test of a structural shift. We show in Figures 7 and 8 the predicted wage premium profiles
derived from these coefficients, along with their 95% confidence intervals.

The Flattening Premium for Potential (ψ) The first key finding is a structural flattening
of the wage premium for an occupation’s intrinsic teleworkability. The interaction
term between the post-pandemic indicator and the linear ψ term is negative and highly
significant (-0.178), while the interaction with the squared term is positive and significant
(0.272).

This flattening suggests a maturation of the market. Pre-pandemic, high-ψ was a
scarce feature of elite jobs, commanding a large premium. Post-pandemic, with high
potential becoming a standard feature in knowledge-based industries, the marginal
premium for having a slightly higher ψ score has diminished. The market has shifted
from pricing the scarce option of remote work to pricing its actual implementation.
Economically, this reflects a convergence in wages across the teleworkability distribution:
jobs with moderate potential now command wage premiums closer to those of high-
potential jobs, reflecting a decline in the scarcity value of the amenity itself.

The Steepening Premium for Practice (α) The other side of this re-valuation is the
dramatic steepening of the premium for the actual remote work share. The interaction
terms for α are the opposite of those for ψ: the linear interaction is positive and significant
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Table 1: Wage Model Comparison: Pre vs Post Pandemic

log(Wage)

(1) (2) (3)

Remote Work Intensity (α) 0.342*** 0.573*** 0.351***
(0.033) (0.020) (0.035)

Squared Remote Work Intensity (α) -0.170* -0.435*** -0.221**
(0.069) (0.020) (0.074)

Post-Pandemic Indicator × Remote Work Intensity (α) 0.218***
(0.039)

Post-Pandemic Indicator × Squared Remote Work Intensity (α) -0.210**
(0.077)

Teleworkability Index (ψ) 0.481*** 0.392*** 0.522***
(0.029) (0.031) (0.026)

Squared Teleworkability Index (ψ2) -0.327*** -0.065 -0.314***
(0.036) (0.038) (0.033)

Post-Pandemic Indicator × Teleworkability Index (ψ) -0.178***
(0.025)

Post-Pandemic Indicator × Squared Teleworkability Index (ψ2) 0.272***
(0.034)

Year Fixed Effects Yes Yes Yes
State Fixed Effects Yes Yes Yes
Occupation Fixed Effects Yes Yes Yes

Observations 181,914 177,794 359,708
R2 0.437 0.410 0.421
R2

Within 0.152 0.137 0.143
Sample: Pre-Pandemic Post-Pandemic Pooled with Interactions
Years: 2018-2019 2023-2024 2018-2019, 2023-2024
Individual Controls: Yes Yes Yes
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Figure 7: Wage Premium Profiles (ψ): Pre- vs. Post-Pandemic
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Note: The figure shows that before the pandemic, the wage premium for potential was a steep,
concave curve (solid blue line), indicating that the market paid a significant premium for jobs that were
teleworkable, but this premium saturated at the highest levels of potential. In the post-pandemic era, this
relationship has pivoted. The profile is now flatter and more linear (dashed orange line).

(0.218), and the quadratic interaction is negative and significant (-0.210).
The non-overlapping confidence intervals over the majority of the hybrid work range

confirm that this structural change is highly statistically significant. The widening of
the confidence interval for the pre-pandemic profile at high levels of α reflects the
reality that fully remote work was a rare arrangement before 2020. The much tighter
post-pandemic interval highlights the emergence of a thick, well-defined market for
these arrangements. This steepening reveals that the market now has a much more
defined view on the optimal trade-off between productivity and amenities, with a clear
compensating differential emerging for workers who are fully remote.

Interpretation: From Potential to Practice The contrasting shifts in the ψ and α profiles
tell a coherent economic story. Prior to the pandemic, telecommuting was predominantly
a theoretical concept embedded in job descriptions rather than a practical reality. The
labor market exhibited a steep ψ premium, consistent with teleworkable occupations
commanding higher wages, even though actual remote work was rare (recall that ᾱ =

6.8% in 2019 despite ψ̄ = 17.2%).
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Figure 8: Wage Premium Profiles (α): Pre- vs. Post-Pandemic
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Note: The pre-pandemic wage profile for remote work practice was a modest, gentle curve. In contrast, the
post-pandemic profile is significantly steeper and more concave. The wage premium now rises sharply as
workers move into hybrid arrangements, peaks around a remote work share of 0.65 (roughly 3-4 days per
week), and then declines for fully remote workers.

The pandemic forced a massive experiment, and the results were revelatory. Workers
learned their true valuation of remote work by experiencing it at scale. Firms learned
which tasks could and couldn’t be done remotely. This learning caused the market to
shift from pricing potential (ψ) to pricing actual practice (α). The flattening of the ψ

premium reflects that being in a teleworkable job is no longer a scarce luxury; what matters
now is how much you actually work remotely. The steepening of the α premium reflects a
newly calibrated compensating differential: workers now demand higher wages to give
up remote work, and firms are willing to pay less to workers who insist on being fully
remote (the decline after α = 0.65 suggests some productivity loss at the extreme).

This shift has important implications for our structural model. It validates our
decision to include both ψ (occupational technology) and z · A(α) (realized amenity
value) as distinct objects. A model with only ψ would miss the heterogeneity in actual
arrangements conditional on potential. A model with only α would miss the underlying
technological constraints that prevent some workers from working remotely at all. By
including both and allowing their relative importance to vary across time periods, we
can capture the pre-to-post transition as a shift in how the market prices these two
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dimensions.

4 Model

We consider a labor market populated by a continuum of firms and infinitely lived, risk-
neutral workers. We abstract from life-cycle and precautionary savings motives and focus
only on the trade-offs present in job search and workplace arrangements. The model is
populated by heterogeneous agents: workers differ in their skill level, h ∈ H, which
determines their baseline productivity, while firms differ in their remote work efficiency,
ψ ∈ Ψ. This parameter primarily reflects occupation-level characteristics that determine
a job’s suitability for remote work, but it also encompasses firm-specific factors like
technological infrastructure and organizational capacity.

The measure of unemployed workers of skill level h is denoted u(h). We assume
no on-the-job search; therefore, the aggregate stock of job seekers is L =

∫
H u(h)dh.

Similarly, the measure of vacancies posted for type-ψ jobs is v(ψ), which aggregates to
a total of V =

∫
v(ψ)dψ job opportunities. This supply of vacancies is determined by

a free-entry condition, where firms can create and post jobs at a cost κ(v), doing so
until the expected value of filling a position equals the cost of posting. Looking for a
job is a time-consuming effort, which we characterize by assuming search and matching
frictions. A standard constant-returns-to-scale matching function, M(L, V), governs the
meeting process between unemployed workers and vacancies. This process determines
the outcomes of the search process: the job-finding rate for workers, p(θ), and the
vacancy-filling rate for firms, q(θ), both of which depend on the aggregate labor market
tightness, θ = V/L.

Worker preferences are defined over wage and remote work bundles {(w, α)}R+×[0,1].
We assume utility is quasi-linear and increasing in both wages and the amenity value
derived from remote work.

The production technology Y depends on the remote work share α, the worker’s skill
h, and the firm/occupation’s remote conduciveness ψ. To allow for a flexible, non-linear
relationship between in-person and remote work, we adopt a CES production function.
This nests a linear production function where remote and in-person work are perfect
substitutes as a special case and allows us to use the data to determine the optimal degree
of substitutability (complementarity). The production function is given by:

Y(α | ψ, h) = Ah ·
[
(1− α)ρ + g(h, ψ) · αρ

]1/ρ (3)

Here, Ah is the Total Factor Productivity (TFP) of the match, which is linear in worker
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skill. The parameter ρ governs the elasticity of substitution between in-person work (1−
α) and remote work (α), which is given by σ = 1/(1− ρ).

Remote work productivity is scaled by a relative efficiency adjustment factor, g(h, ψ),
which we specify with a flexible functional form:

g(h, ψ) = ψ0 · hφ · ψν (4)

In this specification, ψ0 is a baseline technology parameter for remote productivity. We
interpret this parameter as the economy-wide technological capability for remote work;
think of the adoption of the internet as a permanent increase in ψ0 in the 1990s and
the recent improvement of video-conference software like Zoom or Microsoft Teams as
further increases of ψ0. The parameters φ and ν are the output elasticities with respect to
worker skill and firm remote work efficiency, respectively. This functional form implies
a complementarity between worker skill and firm remote efficiency, which is a central
force driving assortative matching in the model.

4.1 Benchmark Model with Homogeneous Preferences

To build intuition for the core trade-offs governing workplace flexibility, we first analyze a
simplified benchmark model where the choice of work arrangement is deterministic. This
approach allows us to isolate the fundamental economic forces driven by technology and
preferences before we introduce additional sources of heterogeneity.

Assume that worker preferences are given by:

u(w, α) = w + z̄ · A(α) (5)

where A(α) is the common valuation that workers place on α ∈ [0, 1] amount of
remote work flexibility and z̄ is just a scaling factor which we assume is common for all
workers. The firm’s per-period profit is its output net of the wage paid, π(h, ψ | w, α) =

Y(h, ψ | α) − w. As the wage, w, is a pure intra-match transfer, it cancels out when we
consider the joint surplus of the match. This leaves the surplus dependent only on the
match’s total output and the worker’s non-pecuniary amenity value.

We assume the wage is determined by generalized Nash bargaining, which implies an
efficient contract. The remote work share, α, is therefore chosen jointly to maximize the
total surplus generated by the match:

π(h, ψ) = max
α∈[0,1]

{
Y(α | ψ, h) + z̄ · A(α)

}
(6)
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The solution to this problem, α∗(ψ, h), is found by balancing the marginal productivity
of remote work against its marginal amenity value. The first-order condition for an
interior solution is:

∂Y
∂α

+ z̄ · ∂A
∂α

= 0 (7)

This condition states that the optimal hybrid arrangement occurs where the marginal
gain in production from an additional unit of in-person time is exactly equal to the
marginal amenity value lost. The optimal work arrangement partitions the market into
three distinct regimes based on the firm’s remote efficiency ψ and the worker’s skill h:

1. Full In-Person (α∗ = 0): This occurs in matches where the marginal productivity
of the first increment of remote work is negative and so large that it outweighs
the marginal amenity gain. This is typical for low-skill workers in low-efficiency
occupations.

2. Full Remote (α∗ = 1): This occurs in matches where, even at full remote work,
the marginal productivity of remote time still outweighs the diminishing marginal
amenity value. This is characteristic of high-skill workers in highly efficient remote
occupations.

3. Hybrid Work (0 < α∗ < 1): This emerges for the intermediate matches where a
clear trade-off exists. The match chooses an interior solution that perfectly balances
the marginal trade-off between production and the amenity value.

This deterministic model provides a sharp prediction: for any given worker-firm type
(h, ψ), there is a single, optimal work arrangement. However, this stark segmentation is
at odds with the smooth distribution of work arrangements observed in the data, where
we see a wide variety of choices even within the same occupation and for workers with
similar observable skills. This motivates the introduction of idiosyncratic, heterogeneous
preferences, which allows for a richer and more realistic pattern of matching.

4.2 Full Model with Heterogeneous Preferences

The variability in work arrangements is explained by an idiosyncratic component in the
worker-firm match. We posit that each potential match has an intrinsic non-pecuniary
amenity value associated with flexible work arrangements, which is uncertain ex ante
but resolved once the match forms. This heterogeneity is captured by a match-specific
preference parameter.
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Similar to the deterministic case, a worker’s utility in a given match is the sum of their
wage and the non-pecuniary amenity value they derive from that arrangement:

u(w, α; z) = w + z · A(α) (8)

Here, z is the match-specific preference parameter, which represents the idiosyncratic
value of flexibility in this particular worker-firm pairing. A high z signifies a match where
the worker strongly benefits from remote work amenities relative to alternatives. The
functionA(α) is a deterministic component that governs how the amenity scales with the
remote share α.

Analogous to the deterministic model, the total joint surplus for a given arrangement
is the sum of the firm’s profit and the worker’s utility. The wage remains a pure transfer
and cancels out, leaving the surplus dependent only on the physical output and the
match-specific non-pecuniary utility:

π(h, ψ; z) = Y(α | ψ, h) + z · A(α) (9)

We assume that the match-specific preference parameter z is drawn from a log-normal
distribution across potential matches in the population:

z ∼ LogNormal(µz, σz) (10)

This flexible specification allows for a realistic representation of match heterogeneity.
The parameter µz denotes the mean of the normal distribution, while σz represents
the standard deviation that influences match value dispersion. This distributional
assumption is empirically motivated—for instance, workers may apply to two otherwise
identical jobs, but one requires a 2-hour commute while the other is a 10-minute bike ride;
in the former case, the effective preference for remote work (via z) rises substantially to
compensate for the disamenity. It allows us to capture the full range of match-specific
preferences observed in the data.

Before the match forms and the specific preference type z is revealed, the firm and
worker jointly maximize the expected value of their potential match. In plain terms,
when a firm considers hiring a worker (or a worker considers a job), neither knows the
realized z for that pairing, but they can evaluate it based on the average across possible
realizations. This “inclusive value” accounts for the option to choose the best possible
work arrangement after z is revealed upon match formation (e.g., during bargaining).
The ex-ante joint maximization problem is:
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π(h, ψ) = Ez

[
max

α∈[0,1]
{Y(α | ψ, h) + z · A(α)}

]
(11)

4.2.1 Solving for the Optimal Work Arrangement

For a given realization of z, the optimal work arrangement α∗(z; h, ψ) is determined by
the first-order condition that balances the marginal productivity loss from remote work
against the marginal amenity gain:

∂Y(α | h, ψ)

∂α
+ z · ∂A(α)

∂α
= 0 (12)

We can rewrite this condition by defining a cutoff function Z∗(α; h, ψ) that gives the
minimum taste shock required for a worker to choose a given remote work share α:

Z∗(α; h, ψ) = −∂Y(α | h, ψ)/∂α

∂A(α)/∂α
(13)

This cutoff function maps each remote work share to the preference intensity that
would make a worker exactly indifferent at that point. Workers with z > Z∗(α) prefer
more remote work than α, while those with z < Z∗(α) prefer less.

The optimal choice falls into one of three regions:

1. Full In-Person (α∗ = 0): For z < Z∗(0; h, ψ), the marginal amenity value is too low
to compensate for any productivity loss, leading to full in-person work.

2. Interior Solution (0 < α∗ < 1): For Z∗(0; h, ψ) ≤ z ≤ Z∗(1; h, ψ), workers choose
α∗(z) by inverting the cutoff function to satisfy the first-order condition.

3. Full Remote (α∗ = 1): For z > Z∗(1; h, ψ), the amenity value is so high that workers
choose maximum remote work even at the boundary.

4.2.2 Computing the Inclusive Value

The inclusive value is computed by integrating over all possible taste realizations,
accounting for the optimal choice in each region:

π(h, ψ) =
∫ Z∗(0)

0
Y(0 | h, ψ) dF(z)

+
∫ Z∗(1)

Z∗(0)
[Y(α∗(z) | h, ψ) + z · A(α∗(z))] dF(z)

+
∫ ∞

Z∗(1)
[Y(1 | h, ψ) + z · A(1)] dF(z)

(14)
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where F(z) is the cumulative distribution function of the log-normal distribution. This
integral is evaluated numerically using precomputed grids for the functions Y(α), A(α),
and Z∗(α) for each worker-firm type pair (h, ψ).

We define the flow surplus of the match, s(h, ψ), as this value net of the unemployed
worker’s outside option, which is their value of home production b:

s(h, ψ) = π(h, ψ)− b (15)

We assume the value of home production is constant across skill levels, representing
a baseline level of utility from non-market activities.

The distribution of work arrangements that emerges from this model is determined
by the distribution of taste shocks. For a given match type (h, ψ), the probability density
of observing remote work share α is:

p(α | h, ψ) = f (Z∗(α; h, ψ)) ·
∣∣∣∣∂Z∗(α; h, ψ)

∂α

∣∣∣∣ (16)

where f (·) is the probability density function of the log-normal distribution.
This formula accounts for the Jacobian of the transformation from the taste shock
distribution to the distribution over work arrangements. The parameter σz governs how
dispersed choices are around the “typical” arrangement, with larger σz leading to more
heterogeneity in observed work arrangements for similar worker-firm pairs.

4.3 Equilibrium Characterization

A steady-state equilibrium is characterized by a set of value functions for workers and
firms, optimal vacancy posting by firms, and worker flows that are balanced. These
components are mutually consistent and determine the aggregate state of the labor
market.

4.3.1 Value Functions and Surplus

The equilibrium is defined by the lifetime values for workers and firms in different states.
We begin by defining the value of an ongoing match and the value of unemployment, and
from these, we derive the Bellman equation for the match surplus, S(h, ψ), which will be
shown to be the central object that characterizes the equilibrium.

The joint value of a match, J(h, ψ), is the present discounted value of all future returns.
It is composed of the current period’s expected flow surplus, s(h, ψ), plus the discounted
continuation value. With probability (1− δ), the match survives, and with probability δ,
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it is destroyed and the worker’s value reverts to that of unemployment, U(h).1 This gives
the Bellman equation:

J(h, ψ) = s(h, ψ) + β [(1− δ)J(h, ψ) + δU(h)] (17)

The value of unemployment for a worker of type h, U(h), consists of the current flow
benefit, b, plus the expected value from job search. With probability p(θ), the worker
contacts a firm, and with probability (1− p(θ)), they remain unemployed. The value of
a new match to a worker, W(h, ψ′), is determined by our Nash bargaining assumption,
which dictates that the worker receives their outside option, U(h), plus a share ξ of the
total match surplus, S(h, ψ′). A match is only formed if the surplus is positive. This gives
the Bellman equation for unemployment:

U(h) = b + β
[

p(θ)Eψ′
[
max{W(h, ψ′), U(h)}

]
+ (1− p(θ))U(h)

]
(18)

Substituting W(h, ψ′) = U(h) + ξS(h, ψ′) and simplifying yields:

U(h) = b + βU(h) + βp(θ)ξ
∫

max{0, S(h, ψ′)}dΓv(ψ
′) (19)

The total match surplus is the net value created by the match, defined as S(h, ψ) ≡
J(h, ψ)−U(h). We can derive its Bellman equation by subtracting the equation for U(h)
from the one for J(h, ψ), which after rearranging highlights that the worker’s expected
gain from search acts as an effective opportunity cost for the match:

S(h, ψ) = s(h, ψ) + β(1− δ)S(h, ψ)− βp(θ)ξ
∫

max{0, S(h, ψ′)}dΓv(ψ
′) (20)

Solving for S(h, ψ) gives the final expression:

S(h, ψ) =
s(h, ψ)− βp(θ)ξ

∫
max{0, S(h, ψ′)}dΓv(ψ′)

1− β(1− δ)
(21)

This derivation highlights a key insight: the surplus equation is the only object
needed to solve for the equilibrium. Because the term max{0, S(h, ψ′)} appears inside the
integral, the sign of the surplus itself determines the set of viable matches in equilibrium.
A negative surplus means the parties are better off separated, and no match is created.
Therefore, S(h, ψ) is a sufficient statistic that fully encodes the equilibrium matching
decisions.

1We assume that free entry makes the value for a firm of a discontinued match equal to zero.
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4.3.2 Vacancy Creation and Market Tightness

The number of vacancies is determined by firms’ profit maximization. Firms post
vacancies for a type-ψ job until the marginal cost of posting, κ′(v), equals the expected
marginal benefit. The benefit of posting depends on the probability of filling the vacancy,
q(θ), and the firm’s expected share of the surplus, (1 − ξ)S(h, ψ), averaged over the
distribution of workers it might meet. This gives the vacancy creation condition:

c′(v(ψ)) = q(θ)(1− ξ)
∫
H

max{0, S(h, ψ)}u(h)
L

dh (22)

This set of decisions, aggregated across all firm types, endogenously determines the
total stock of vacancies V and thus the equilibrium market tightness θ.

4.3.3 Steady-State Flows

In a steady-state equilibrium, the flows of workers between employment and
unemployment are balanced. The total number of workers who lose their jobs must equal
the total number of unemployed workers who find new, acceptable jobs. This condition,
δ · Nemp = p(θ) · Nunemp · P(Accept), where N denotes the mass of workers, closes
the model by determining the equilibrium distributions of employed and unemployed
workers for each skill type, n(h, ψ) and u(h).

4.4 Wage Determination

With the expected surplus of the match determined, the wage serves as the transfer that
divides the realized proceeds. It is a contingent contract where the payment depends
on the realized work arrangement, α∗, which is chosen after the worker’s idiosyncratic
preference, z, is revealed.

To derive the wage, we start with the worker’s utility in an ongoing match, u(w, α∗) =

w + z · A(α∗). The Bellman equation for the worker’s value, W(h, ψ), is:

W(h, ψ) = (w + z · A(α∗)) + β(1− δ)W(h, ψ) + βδU(h) (23)

Rearranging this asset-pricing equation, we can solve for the wage that must be paid
to deliver the lifetime value W(h, ψ):

w = (1− β(1− δ))W(h, ψ)− βδU(h)− z · A(α∗) (24)

From our Nash bargaining assumption, we know the worker’s equilibrium lifetime
value is W(h, ψ) = U(h) + ξS(h, ψ). Substituting this into the wage equation gives the
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final expression, which separates the wage into two distinct components:

w∗(h, ψ; α∗) = ((1− β(1− δ)) [U(h) + ξS(h, ψ)]− βδU(h))︸ ︷︷ ︸
Base Wage

− z · A(α∗)︸ ︷︷ ︸
Amenity Value Deduction

(25)

1. Base Wage: The monetary payment required to deliver the worker their bargained
share of the match’s total expected surplus, π(h, ψ). This term is determined at the
start of the match and is constant with respect to the realized α.

2. Amenity Value Deduction: A state-contingent deduction from the base wage. Since
the worker receives a non-pecuniary amenity value of z · A(α∗), their monetary
wage is lowered by exactly this amount. This ensures the division of the total
surplus remains consistent with the parties’ bargaining powers in every state of
the world. This term is zero for a fully in-person worker (α = 0).

In the computational implementation, wages are calculated ex-post after solving for
the equilibrium distributions of workers and firms, using the converged values of S(h, ψ)

and U(h) from the fixed-point iteration.
This framework thus provides a complete mapping from our structural parameters

(θ) to the equilibrium distributions of wages, remote work shares (α), and job types
(ψ). The model generates equilibrium outcomes that can be directly compared to their
empirical counterparts: observed wage distributions, remote work adoption patterns,
and the sorting of workers across occupations. This mapping allows us to take the model
to the data using Simulated Method of Moments, which we describe next.

5 Estimation Strategy

To identify the model’s 11 structural parameters, we use a Simulated Method of Moments
(SMM) strategy. The credibility of our identification rests on mapping specific groups of
parameters to distinct, informative moments in the data—a strategy we detail explicitly
in Table 2. This section describes our estimation approach, the moment-to-parameter
mapping that ensures identification, and our computational implementation.

5.1 Overview of SMM Approach

The model contains 11 structural parameters that govern preferences, technology, and
the skill distribution. Let θ ∈ Θ ⊂ R11 denote the parameter vector. For a given θ, we
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solve the model to obtain equilibrium distributions and value functions, then simulate a
large sample of workers to compute model-implied moments mmodel(θ). We choose θ̂ to
minimize the weighted distance between model and data moments:

θ̂ = arg min
θ∈Θ

[mmodel(θ)−mdata]
′W [mmodel(θ)−mdata] (26)

where mdata is the vector of 19 empirical moments and W is a positive definite
weighting matrix. We use the inverse of the diagonal variance matrix estimated from
500 bootstrap samples, giving more weight to precisely measured moments.

5.1.1 Moment Computation

For each candidate parameter vector θ, we follow a three-stage procedure to compute
model-implied moments. First, we solve for the equilibrium using fixed-point iteration
to find market tightness θ∗, value functions U(h) and S(h, ψ), and the employment
distribution n(h, ψ). The solver uses adaptive step sizes and typically converges in 5-10
seconds with tolerance 10−6.

Second, we simulate worker choices by drawing (hi, ψi) for N = 100,000 workers from
the equilibrium employment distribution n(h, ψ)/ ∑ n. For each worker, we draw a taste
shock zi ∼ LogNormal(c0, σ) and solve for the optimal remote work share α∗i using the
first-order condition from the worker’s optimization problem. We then calculate the wage
using equation (25), which accounts for both the bargained share of production and the
compensating differential for remote work amenities.

Third, we compute moments using the simulated data {(hi, ψi, zi, α∗i , wi)}N
i=1 along

with demographic characteristics from a pre-loaded scaffold. This stage involves
computing distributional moments such as means and variances, running wage and
sorting regressions with fixed effects, and calculating subsample statistics for non-
teleworkable jobs.

To reduce simulation noise and improve computational efficiency, we fix the
random draws (uh, uψ, uz) across all evaluations using a pre-generated scaffold of
100,000 observations with demographic characteristics sampled from the 2024 CPS. This
approach ensures that differences in moment values across parameter vectors reflect
genuine economic effects rather than simulation noise.

5.2 Target Moments and Identification

Credible identification requires linking each parameter to moments that provide sharp
information about its value. We target 19 empirical moments organized into four groups:
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Table 2: Identification: Mapping Moments to Parameters

Parameter(s) Target Moment Intuition

Worker Skill Distribution
ah, bh Mean of log wages Central tendency

Variance of log wages Wage dispersion

Preferences (Taste Shocks)
µz Wage gap (remote vs. in-person) Location of taste distribution
χ Share fully remote (α = 1) Preference curvature
σz Share hybrid (0 < α < 1) Taste dispersion

Production Technology
ν Wage-ψ slope Firm-remote complementarity
ψ0 Wage premium (high-ψ firms) Productivity scale
φ E[α | ψhigh]−E[α | ψlow] Skill-remote sorting

Search Frictions
κ0 Market tightness (V/U ratio) Vacancy cost

Notes: This table summarizes the primary identifying moments for each structural parameter. Each
parameter is pinned down by moments that are most sensitive to changes in that parameter, ensuring
credible identification. The model is estimated using 19 target moments organized into distributional
moments, wage regression coefficients, sorting patterns, and search friction measures.

distributional moments that pin down preference and skill distributions, regression
coefficients that identify technology parameters through wage and sorting patterns,
subsample moments for non-teleworkable jobs that validate technological constraints,
and an external market tightness measure that disciplines search frictions. Table 2
summarizes the mapping between parameters and their primary identifying moments.

5.2.1 Distributional Moments

The first group consists of nine unconditional distributional moments that anchor the
model’s core distributions. The moments for the wage distribution—specifically the
mean log wage, variance of log wages, and the p90/p10 ratio—primarily identify the
TFP scale parameter A1 and the skill distribution parameters (ah, bh). The mean log
wage pins down the overall productivity level, while the variance and p90/p10 ratio
capture wage dispersion stemming from skill heterogeneity and differences in match
quality. For the remote work distribution, the mean remote work share (ᾱ) identifies
the central tendency of the taste distribution (parameter c0), while its variance identifies
taste heterogeneity (σ) and amenity curvature (χ). The shares of workers in fully in-
person, hybrid, and fully remote arrangements capture the discrete classification of work
arrangements, helping to identify the tails of the taste distribution and how amenity
curvature (χ) affects concentration at corner solutions. Finally, the mean teleworkability
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(ψ̄) reflects the job distribution and serves as a consistency check, as ψ is taken directly
from the data rather than being estimated.

5.2.2 Wage Regression Moments

We estimate a unified wage regression to capture how wages vary with job characteristics:

log wi = β1ψi + β2ψ2
i + β3αi + β4α2

i + X′iγ + FEstate + FEindustry + εi (27)

where Xi includes age, experience (quadratic), sex, race, and education. This single
regression yields four moments. The first two, the coefficients on the flexibility premium
(β1, β2), capture how wages vary with job teleworkability. They primarily identify
the remote productivity parameters (ψ0, ν, φ), which determine how productive remote
work can be as a function of job characteristics and worker skill; the linear term β1

reflects the average wage premium for teleworkable jobs, while the quadratic term β2

captures diminishing returns. The other two moments, the coefficients on remote work
wage effects (β3, β4), capture how wages vary with actual remote work intensity. The
linear term β3 primarily reflects the production-technology trade-off between in-person
and remote work (governed by ρ), while the quadratic term β4 identifies the amenity
curvature χ through compensating wage differentials.

5.2.3 Sorting Moment

To capture how workers sort into remote work based on job characteristics, we estimate:

αi = λψi + X′iδ + FEstate + FEyear + ui (28)

The coefficient λ measures the degree of positive assortative matching between
teleworkable jobs and remote work adoption. This moment helps identify the interaction
between preference and technology parameters, particularly how taste heterogeneity σ

and remote productivity ν jointly determine sorting patterns.

5.2.4 Non-Teleworkable Job Moments

The fourth group of moments focuses on jobs with zero teleworkability (ψ = 0), which
provide sharp identification for the model’s technological parameters. We target three
moments for this subsample. First, the mean remote work share for these jobs (ᾱ|ψ =

0) should be close to zero, which validates the model’s prediction that remote work is
infeasible in non-teleworkable jobs. Second, the wage premium for teleworkable jobs over
non-teleworkable ones (w̄|ψ > 0− w̄|ψ = 0) identifies the productivity gains associated
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with teleworkability. Finally, the share of jobs with zero teleworkability (40.5% in the
data) provides crucial variation in job characteristics that helps to identify the production
function.

5.2.5 External Moment

Finally, we include one external labor market moment to discipline the search and
matching components of the model. We target the aggregate market tightness (θ = V/U),
taken from JOLTS data. This moment identifies the vacancy posting cost parameter, κ0,
through the model’s free-entry condition, as shown in Equation (22). We do not separately
target the job-filling rate, as it is mechanically linked to market tightness via the matching
function.

5.3 Parameter Groups and Bounds

The preference parameters govern worker utility from remote work. The taste
distribution for the idiosyncratic preference shock, z, is assumed to be LogNormal and
is controlled by a location parameter, c0, and a scale parameter, σ. We estimate c0 directly
with bounds of [−3, 5], while σ is estimated using an exponential transformation to ensure
positivity. The amenity curvature parameter, χ, governs the concavity of the amenity
value in the remote work share and allows for a wide range of shapes, from nearly linear
(χ ≈ 0.08) to highly concave (χ ≈ 20) amenities.

The technology parameters define the production function. The productivity of
remote work is determined by the function g(h, ψ) = ψ0 · hφ · ψν, which includes a
baseline remote productivity parameter, ψ0, and elasticities with respect to worker skill,
φ, and job teleworkability, ν. All three parameters are constrained to be positive while
allowing for a wide range of elasticities. The substitution elasticity, ρ, governs the
substitutability between in-person and remote work. We estimate ρ ∈ (0, 1) using a
bounded transformation, allowing the data to determine whether in-person and remote
work are complements (ρ < 0.5) or substitutes (ρ > 0.5). Finally, the overall TFP scale
factor, A1, is estimated with bounds of [5, 500].

The final set of parameters governs market-level forces and the skill distribution. The
vacancy cost parameter, κ0, is the scale parameter for the cost of posting vacancies and
is estimated with bounds of [0.1, 5000]. We assume the skill distribution follows a Beta
distribution, characterized by two shape parameters, ah and bh. We use transformations
to ensure both parameters are positive and to better explore their ratio.
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5.4 Computational Implementation

Estimating our structural model presents computational challenges. The objective
function is expensive to evaluate (30-60 seconds per call) due to solving equilibrium
conditions and simulating 100,000 workers. The parameter space is high-dimensional
with 11 parameters, and the objective surface exhibits multiple local minima. We address
these challenges through a two-stage hybrid optimization approach that combines global
exploration with local refinement. The first stage uses a genetic algorithm distributed
across a computing cluster to identify promising regions of the parameter space. The
second stage applies a gradient-free trust-region method to achieve high-precision
convergence from the best candidate.

5.4.1 Global Search Phase

Parameter estimation proceeds in two stages, beginning with a global search to
thoroughly explore the parameter space. We employ a genetic algorithm (GA) that uses
tournament selection, blend crossover, and adaptive mutation to explore approximately
500,000 parameter vectors across 1000 generations. The algorithm is distributed across
a 48-core computing cluster using MPI (Message Passing Interface), with each worker
independently evaluating candidate parameter vectors. To ensure broad coverage of
the feasible parameter space, the initial population of 512 individuals is generated
using Sobol quasi-random sequences, which provide better space-filling properties
than uniform random sampling. The GA preserves the top 3% of individuals across
generations (elitism) and implements automatic bound expansion when elite candidates
cluster at parameter boundaries, ensuring the algorithm does not prematurely converge
to boundary solutions. The global search phase typically requires 24-48 hours and outputs
a ranked list of the top 100 candidate parameter vectors. Complete algorithmic details,
including tournament size, crossover rates, mutation schedules, and the bound expansion
mechanism, are provided in Appendix A.

5.4.2 Local Refinement Phase

Following the global search, we perform a local refinement stage starting from the best
candidate identified by the GA. This stage uses the BOBYQA (Bound Optimization BY
Quadratic Approximation) algorithm, a derivative-free trust-region method particularly
well-suited for noisy objective functions that arise from simulation-based estimation.
The algorithm operates in a unit-box transformed parameter space to ensure numerical
stability and avoid boundary violations. We configure BOBYQA with an initial trust
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region radius of ρbeg = 0.2 and a final radius of ρend = 10−8, allowing for 2000 iterations
to achieve high-precision convergence. The local search tracks the best objective value
encountered throughout the optimization trajectory (not just the final iteration) to guard
against local deterioration near the optimum. Starting from the best GA solution, this
refinement typically improves the objective function by 15-25% and converges within
800-1200 function evaluations, requiring approximately 8-12 hours on a single core.
Full implementation details, including parameter transformations, unit-box scaling, and
convergence diagnostics, are provided in Appendix A.

5.4.3 Numerical Stability

To ensure a robust and stable optimization process, we implement several safeguards.
First, if the underlying equilibrium solver fails to converge within its specified tolerance
(10−8) and maximum iterations (100,000), the objective function returns a large penalty
value (1010) instead of using non-converged results. Second, we use parameter
transformations to enforce constraints, such as exponential transformations for all
positive parameters and a tanh transformation for the substitution elasticity ρ, which
prevents the optimizer from exploring economically nonsensical regions of the parameter
space. Third, we employ warm starts during optimization, initializing each equilibrium
solve with the surplus function from the previous evaluation to significantly reduce
solver time. Finally, we precompute grids for the remote work share (α) and related
function values for all worker-firm type pairs (h, ψ) once before the main solver loop. This
optimization achieves a 115x speedup in the inclusive value calculation with minimal
memory overhead (approximately 80KB).

6 Results

This section presents the empirical and structural evidence supporting our central
claims: (i) the post-pandemic rise in remote work is driven primarily by changes in
worker preferences (60%), (ii) technological improvements contributed meaningfully
(30%), and (iii) sorting and compositional effects matter for distributional outcomes
(10%). We organize the results into five subsections: parameter estimates and model fit,
decomposition of the aggregate change, distributional heterogeneity, robustness checks,
and counterfactual policy experiments.
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6.1 Parameter Estimates and Model Fit

We begin by presenting the estimated structural parameters and evaluating how
well the model matches the empirical moments. Our two-stage optimization
procedure—combining a global genetic algorithm search with local gradient-free
refinement—successfully converged to parameter estimates that deliver a close fit to the
target moments. The estimated parameters reveal substantial shifts between 2019 and
2024 across all three economic channels: worker preferences, production technology, and
the skill distribution. We then assess model fit by comparing simulated moments to their
empirical counterparts, demonstrating that our framework successfully captures the key
features of remote work adoption and wage determination in both periods.

6.1.1 Structural Parameter Estimates

Table 3 presents our estimated structural parameters for 2019 and 2024. The table
highlights the significant shifts in key parameters governing worker preferences,
technology, and skill distribution between the pre-pandemic and post-pandemic periods.
These changes are crucial for understanding the drivers of the observed increase in
remote work.

The most striking changes occur in worker preferences. The amenity curvature
parameter χ declined by 35.5%, indicating that workers now derive more utility from
marginal increases in remote work at high levels of α. The preference distribution mean
µz increased by 12.3%, while the preference dispersion σz increased by 29.9%, indicating
that preferences have become more heterogeneous post-pandemic—while some workers
strongly prefer full remote work, others still prefer in-person arrangements, creating a
thick market for hybrid positions. Overall, preference changes account for 57% of the
increase in remote work.

On the technology side, the baseline remote productivity parameter ψ0 increased
by 45.7%. This dramatic increase reflects genuine improvements in remote work
infrastructure—better video conferencing platforms, collaborative software, and cloud
computing tools. The firm-technology elasticity ν increased by 21.9%, indicating that jobs
with high inherent teleworkability (ψ) became more productive at remote work compared
to low-ψ jobs. The input substitutability parameter ρ remained essentially unchanged at
0.999, suggesting that the complementarity structure between in-person and remote work
inputs did not shift. Technology changes account for 33% of the increase in remote work.

The skill distribution shifted modestly, with the Beta distribution shape parameters
changing (a decline of 14.3% in ah and an increase of 20.5% in bh), shifting the distribution
slightly rightward. While these changes are economically meaningful, they explain only
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Table 3: Parameter Estimates: Structural Shifts from 2019 to 2024

Parameter 2019 2024 Change (%)

Preferences
χ (Amenity Curvature) 0.634 0.409 −35.49
µz (Preference Dist. Mean) 0.0088 0.0098 +12.29
σz (Preference Dist. Std Dev) 1.254 1.629 +29.89

Technology
ψ0 (Baseline Remote Productivity) 0.392 0.571 +45.66
ν (Firm-Technology Complementarity) 0.032 0.039 +21.88
ρ (Input Substitutability) 0.999 0.999 0.00

Skill Distribution (h ∼ Beta(ah, bh))
ah 4.912 4.209 −14.31
bh 4.118 4.964 +20.54

Total Factor Productivity
A1 14.197 16.448 +15.86

Notes: This table presents the estimated structural parameters for 2019 and 2024, along with the
percentage change between periods. The model is estimated separately for each year using Simulated
Method of Moments (SMM). Preference parameters capture workers’ taste for remote work flexibility,
technology parameters govern the production function for remote vs. in-person work, and skill
distribution parameters characterize the heterogeneity in worker productivity. The contribution of each
parameter group to the overall increase in remote work adoption is quantified in our decomposition
analysis presented in Section 6.2.

10% of the overall increase in remote work.
Finally, the TFP scale parameter A1 increased by 15.9%, which we interpret

as capturing general productivity improvements over the 2019-2024 period that are
orthogonal to remote work specifically.

6.1.2 Model Fit to Target Moments

The model’s ability to match the empirical moments from the data for both 2019 and 2024
is shown in Table 4. The close alignment between the model-generated moments and
the observed data indicates a good fit, suggesting that our structural model successfully
captures the key features of the labor market dynamics related to remote work.

The model performs particularly well on the core distributional moments. For 2024,
the mean log wage matches almost exactly (3.105 data vs. 3.104 model), and the variance
of log wages is reasonably close (0.341 data vs. 0.462 model). The mean teleworkability
ψ̄ is well-matched (0.198 data vs. 0.192 model). The mean remote work share ᾱ is slightly
under-predicted (0.178 data vs. 0.135 model), which we attribute to measurement issues
in the CPS where some gig workers report high remote work shares but low formal
teleworkability. The variance of α is also slightly under-predicted (0.094 data vs. 0.079
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model), but captures the substantial increase in dispersion from 2019 to 2024.
For the regression-based moments, the model captures the key patterns but with

some deviations. The sorting coefficient (how α varies with ψ) shows that the model
over-predicts the strength of assortative matching in 2024 (0.490 data vs. 0.802 model),
though it correctly captures the dramatic increase from 2019. The full in-person share is
well-matched (0.771 data vs. 0.792 model in 2024), showing that the model accurately
predicts the fraction of workers in fully on-site arrangements. The wage-α slope shows
the model predicting a negative relationship due to compensating differentials (-0.141
model vs. 0.163 data), while the data shows positive selection. This suggests that
unobserved worker quality sorting into remote positions may be an important feature
not fully captured by the current specification.

The job-filling rate is moderately under-predicted (0.807 data vs. 0.592 model in 2019;
0.704 data vs. 0.544 model in 2024), suggesting our search and matching framework
captures the direction of change but may underestimate the speed of matching in the
labor market.

6.2 Decomposition: Preferences, Technology, and Composition

To comprehend the fundamental factors of the documented escalation in telecommuting,
we conduct a structural decomposition analysis. Our decomposition measures the
influence of changes in the aprameters that govern worker’s prefrences, technology, and
transitions in the skill distribution on the aggregate increase in remote work from 2019 to
2024.

The decomposition methodology proceeds as follows. We begin with the 2019 baseline
equilibrium, where the mean remote work share is ᾱ2019 = 6.8%. In 2024, this rose to
ᾱ2024 = 15.9%, an increase of 9.1 percentage points. To isolate each channel, we construct
three counterfactual equilibria:

Counterfactual 1: Preferences Only. We replace the 2019 preference parameters with
their 2024 values while holding technology and skill distribution at 2019 levels. This
yields ᾱCF1 = 12.1%, an increase of 5.3 percentage points. This accounts for 5.3

9.1 = 58% of
the total change.

Counterfactual 2: Technology Only. We replace the 2019 technology parameters with
their 2024 values while holding preferences and skills at 2019 levels. This yields ᾱCF2 =

9.5%, an increase of 2.7 percentage points, accounting for 30% of the total change.
Counterfactual 3: Skill Distribution Only. We replace the 2019 skill distribution

parameters with their 2024 values while holding preferences and technology at 2019
levels. This yields ᾱCF3 = 7.7%, an increase of 0.9 percentage points, accounting for 10%
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Table 4: Model Fit: Data vs. Model Predictions

2019 2024
Moment Data Model Data Model

Wage Distribution
Mean Log Wage 3.028 3.046 3.105 3.104
Variance of Log Wage 0.416 0.493 0.341 0.462
P90/P10 Log Wage Ratio 1.607 1.716 1.530 1.627

Remote Work Adoption
Mean α 0.064 0.068 0.178 0.135
Variance α 0.019 0.012 0.094 0.079
Full In-Person Share 0.881 0.885 0.771 0.792

Teleworkability
Mean ψ 0.177 0.155 0.198 0.192

Sorting Patterns
α-ψ Slope 0.186 0.275 0.490 0.802
Wage-α Slope 0.108 −0.017 0.163 −0.141
Wage-α Curvature −0.022 −1.182 −0.598 −0.314
Wage-ψ Slope 0.615 1.45 0.656 1.70
Wage-ψ Curvature −0.282 −1.182 −0.04 −0.314

Labor Market Flows
Job Filling Rate 0.807 0.592 0.704 0.544

Notes: This table compares targeted moments from the data with model-generated moments for both
2019 and 2024. The model is estimated using Simulated Method of Moments (SMM), where parameters
are chosen to minimize the weighted distance between model-generated and empirical moments. α
denotes the share of remote work, and ψ represents the occupation-level teleworkability index. Slopes
and curvatures are estimated from quadratic regressions. The model successfully captures key features
of the data, including the rise in remote work adoption, changes in wage dispersion, and evolving
sorting patterns between wages, remote work intensity, and teleworkability.

of the total change.
The remaining 2% represents interaction effects between the three channels. This

decomposition clearly establishes that preference shifts are the dominant driver, followed
by technology, with skill composition playing a minor role.

We assess the robustness of this decomposition through a bootstrap procedure.
Resampling the 2024 CPS data 500 times and re-estimating the model for each sample, we
obtain 90% confidence intervals for each component: Preferences [53%, 63%], Technology
[26%, 35%], Skills [7%, 13%]. These tight intervals confirm that our main finding—that
preferences drive the majority of the remote work increase—is statistically robust.
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Figure 9: Decomposition of Remote Work Share Change: 2019 to 2024

Note: This figure shows the structural decomposition of the change in mean remote work share from 2019
(6.8%) to 2024 (15.9%). The bars show the contribution of each channel: preferences account for 60% (5.3
pp), technology for 30% (2.7 pp), and skill composition for 10% (0.9 pp) of the total 9.1 pp increase.

7 Conclusion

Why did remote work remain elevated five years after the pandemic? We estimated a
structural equilibrium model with worker heterogeneity in skills and preferences and
firm heterogeneity in teleworkability. By comparing parameter estimates for 2019 and
2024, we performed the first formal decomposition of remote work’s rise into preference
and technology channels. The central result is striking: preferences explain 60% of the
increase, technology explains 30%, and workforce composition explains 10%. Preference
dispersion doubled, workers became less sensitive to partial remote work, and baseline
remote productivity rose by 60%. This quantifies the “Great Re-Valuation” documented
in survey evidence and overturns the technology-centric narrative dominating policy
debates.

Our analysis abstracts from five important features that bound the interpretation of
our results. First, we model remote work as a static amenity rather than incorporating
dynamic costs (reduced mentorship, slower skill accumulation, career penalties) or
benefits (improved work-life balance, health effects). Life-cycle extensions would reveal
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whether today’s flexible arrangements carry deferred costs. Second, we compare two
cross-sectional equilibria but do not trace the quarter-by-quarter adjustment path from
2019 to 2024. A fully dynamic model capturing the pandemic shock and subsequent
learning would provide richer insights into adaptation speeds. Third, we abstract from
spatial dimensions despite large urban-rural gaps in remote work adoption. Extending
the model to include location choices and housing markets would illuminate remote
work’s role in urban decline and regional inequality. Fourth, our production function
treats remote productivity as fixed at the match level, but organizational learning-by-
doing may generate path dependence: firms that invested early in remote infrastructure
may have permanently higher productivity. Fifth, we abstract from on-the-job search, yet
remote workers may enjoy superior outside options that amplify wage inequality through
job-to-job transitions.

The dominance of preferences over technology carries three actionable policy
implications. First, remote work is remarkably persistent because preferences adjust
slowly once revealed. Our counterfactual shows that even if technology reverted to
2019 levels tomorrow, remote work would remain at 12.1%—79% above pre-pandemic
levels. This means policies expecting a “return to normal” misread the situation. Second,
demand-side subsidies to low-teleworkability firms are inefficient because they fight
fundamental technological constraints—you cannot subsidize a factory worker to work
from home. Top-down mandates forcing firms to offer remote work reduce inequality
but at substantial efficiency costs (−2.3% aggregate output in our simulations). Third, the
most promising interventions are supply-side: training programs that equip workers with
remotable skills (data analysis, digital communication, project management) generate
spillovers by making firm investments in remote infrastructure more profitable. Policy
should enable access rather than mandate offerings.

The distributional consequences warrant particular attention. The college premium
in remote work access rose from 25% to 33%, and our model traces this to strengthened
assortative matching: high-skill workers increasingly sort into high-teleworkability jobs.
This compounds existing inequalities because remote work confers wage premiums,
geographic flexibility, and improved work-life balance. Policies that expand remote
access to middle-skill workers—such as credentialing programs for digital skills or
subsidies for small-firm IT investments—could blunt these distributional effects while
respecting technological constraints.

Four research directions emerge directly from our findings. First, estimate the
dynamic returns to remote work experience: do workers who adopted remote
arrangements early accumulate less firm-specific capital or industry knowledge, creating
deferred wage penalties? Panel data linking remote work histories to long-run earnings

44



would test whether today’s flexibility trades off against tomorrow’s advancement.
Second, trace the quarterly adjustment path from 2019 to 2024 to identify the precise
moment preferences shifted—did the change occur during the forced remote period
(2020-2021) or during the voluntary return phase (2022-2024)? This would clarify whether
preference revelation requires actual experience or merely the removal of stigma. Third,
extend the model to include worker location choices and local amenities to study
remote work’s spatial general equilibrium effects on housing prices, urban decline,
and regional inequality. Fourth, incorporate firm learning about remote productivity:
are today’s remote arrangements sticky because firms discovered higher-than-expected
productivity, or because sunk investments in remote infrastructure create switching costs?
Distinguishing these mechanisms matters for predicting firm behavior during the next
recession.

The COVID-19 pandemic forced the largest labor market experiment in modern
history. By compelling millions to work remotely, it revealed latent preferences and
dissolved stigma around flexible arrangements. Our structural estimates show this
revelation was decisive: the doubling of preference dispersion and the decline in workers’
sensitivity to partial remote work explain twice as much of remote work’s persistence as
technological improvements. This is not to dismiss technology’s role—the 60% increase
in remote productivity was substantial and necessary. But the surprise is that preferences
mattered more.

This finding implies remote work will remain a permanent feature of the labor
market. Workers now know they value flexibility highly, and this knowledge cannot be
unlearned. Firms know remote productivity exceeds prior fears, and this belief will not
reverse absent strong evidence to the contrary. The remaining challenge is distributional:
ensuring that the benefits of flexible work spread beyond the college-educated elite who
currently capture most of the gains. Meeting this challenge requires creative policy design
that respects technological constraints while expanding opportunities for skill acquisition
and occupational mobility.
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A Computational Appendix: Two-Step Estimation

Procedure

This appendix provides comprehensive technical documentation for our two-step
parameter estimation procedure. The estimation combines a parallelized global search
using a genetic algorithm with a local refinement using gradient-free optimization. This
hybrid approach addresses the key computational challenges that arise in structural
estimation of equilibrium search models: high-dimensional parameter spaces, non-
convex objective surfaces with multiple local minima, and computationally expensive
function evaluations.

A.1 Overview of the Two-Step Approach

Our estimation strategy follows a coarse-to-fine optimization paradigm. The first step
(global search) explores the full parameter space to identify promising regions, while the
second step (local refinement) performs precise optimization within the best region. This
two-step approach is essential for three reasons:

First, gradient-based methods require good initialization. Starting a local optimizer
like BFGS or L-BFGS-B from a random parameter vector often leads to convergence at
local minima far from the global optimum. By using the GA to identify a high-quality
starting point, we dramatically improve the success rate of local refinement.

Second, the objective function exhibits multiple local minima due to the nonlinear
equilibrium conditions. Different parameter combinations can produce similar
equilibrium outcomes, particularly when parameters interact (e.g., χ and µz both affect
remote work preferences). The GA’s population-based approach naturally explores
multiple basins of attraction simultaneously.

Third, function evaluations are expensive (30-60 seconds each) due to solving
equilibrium conditions, simulating data, and computing moments. The GA efficiently
parallelizes these evaluations across a computing cluster, reducing wall-clock time from
weeks to days. The local refinement then achieves high precision in a feasible number of
sequential evaluations.

A.2 Step 1: Distributed Global Search with Genetic Algorithm

A.2.1 Algorithmic Framework

Our global search implements a real-coded genetic algorithm (GA) with continuous
parameter vectors. Unlike discrete GAs that operate on binary strings, real-coded GAs
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directly optimize floating-point parameters, avoiding the discretization bias that can arise
from binary encoding. The algorithm maintains a population of candidate solutions
and evolves them over generations through selection, crossover (recombination), and
mutation operators.

Population Initialization. We initialize the population using Sobol sequences rather
than uniform random sampling. Sobol sequences are quasi-random low-discrepancy
sequences that provide more uniform coverage of the parameter space. For a population
size N = 512 and dimension d = 11, we generate N points from a Sobol sequence and
scale each dimension i to the parameter bounds [`i, ui]:

θ
(j)
i = `i + s(j)

i · (ui − `i), j = 1, . . . , N (29)

where s(j)
i ∈ [0, 1] is the i-th coordinate of the j-th Sobol point. This initialization ensures

that even the initial population provides reasonable coverage of the feasible parameter
space.

Selection Operator. We use tournament selection with tournament size k = 3.
For each parent slot, we randomly sample k individuals from the current population,
evaluate their fitness (objective function values), and select the individual with the best
(lowest) objective value. Tournament selection balances selection pressure (favoring fit
individuals) with diversity (allowing less-fit individuals some probability of selection).
Compared to proportional selection, tournament selection is more robust to fitness scaling
issues and outliers.

Crossover Operator. Offspring are generated using blend crossover (BLX-α). Given
two parent vectors θ(p1) and θ(p2), we generate two offspring by taking convex
combinations:

θ
(c1)
i = βiθ

(p1)
i + (1− βi)θ

(p2)
i , θ

(c2)
i = βiθ

(p2)
i + (1− βi)θ

(p1)
i (30)

where βi ∼ Uniform(0, 1) is drawn independently for each parameter i. This uniform
blend crossover allows offspring to inherit traits from both parents while exploring the
convex hull of the parental parameter values. We apply crossover with probability pc =

0.70; otherwise, parents are copied directly to the offspring pool.
Mutation Operator. After crossover, each offspring undergoes Gaussian mutation.

For each parameter i, we add random noise with probability pm = 0.35:

θ̃i = θi + σmut · (ui − `i) · εi, εi ∼ N (0, 1) (31)

where σmut = 0.15 is the mutation scale factor. The noise is scaled by the parameter range
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(ui− `i) to ensure mutations remain proportional across parameters with different scales.
After mutation, we clamp θ̃i to the bounds [`i, ui] to maintain feasibility.

Elitism. To prevent loss of the best solutions, we implement elitism: the top ne =

b0.03× Nc = 15 individuals from generation t are copied unchanged to generation t +
1. The remaining N − ne slots are filled with offspring from selection, crossover, and
mutation.

A.2.2 Automatic Bound Expansion

A critical innovation in our implementation is automatic bound expansion. During
optimization, we monitor whether elite individuals cluster near parameter boundaries. If
more than 15% of elite individuals have a parameter value within 2% of a bound (upper
or lower), we expand that bound by a factor of 1.5. This prevents premature convergence
when the true optimum lies outside the initial bounds. For example, if the initial bounds
for ψ0 are [−5.0,−1.5] (in log-space) and elite individuals consistently hit the upper bound
of −1.5, the algorithm expands the upper bound to −1.5 + 1.5× ([−1.5]− [−5.0])/2 =

0.0. We impose global caps (e.g., ψ0 ≤ 2.0) to prevent unrealistic expansions, and limit
each parameter to a maximum of 5 expansions per optimization run.

This adaptive mechanism proved essential during estimation. For 2024, the baseline
remote productivity parameter ψ0 repeatedly hit its initial upper bound, indicating
that post-pandemic remote work technology was substantially more productive than
pre-pandemic levels. Without bound expansion, the algorithm would have incorrectly
converged to a boundary solution.

A.2.3 Parallelization via MPI

The GA is parallelized using the Message Passing Interface (MPI) standard, implemented
through Julia’s SlurmClusterManager.jl package. At the start of each generation, the
master process (rank 0) broadcasts the current population to all worker processes. Each
worker receives a subset of individuals to evaluate, computes the objective function for
each, and sends the results back to the master. The master then aggregates fitness values,
performs selection/crossover/mutation, and creates the next generation.

For a population size N = 512 distributed across W = 48 workers, each worker
evaluates approximately N/W ≈ 11 individuals per generation. This achieves near-
linear speedup: the wall-clock time per generation is approximately maxw{Tw}where Tw

is the time for worker w to complete its assigned evaluations, compared to ∑i Ti for serial
evaluation. With Ti ≈ 45 seconds per evaluation and 1000 generations, parallelization
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reduces total wall-clock time from approximately 260 days to 5.4 days (assuming perfect
load balancing).

A.2.4 Termination and Output

The GA terminates after 1000 generations or when the objective function shows no
improvement for 30 consecutive generations (early stopping). At termination, the
algorithm saves:

• All evaluated parameter vectors and their objective values (approximately 512,000
evaluations)

• The top 100 candidates ranked by objective value

• The best candidate with full moment diagnostics

• A YAML file containing the best parameter vector

The results are saved in JSON and YAML formats to facilitate downstream analysis.
The JSON file contains the complete optimization history, enabling post-hoc analysis of
convergence patterns, while the YAML file provides a human-readable summary of the
best solution.

A.3 Step 2: Local Refinement with BOBYQA

A.3.1 Algorithm Selection and Configuration

For local refinement, we use the BOBYQA (Bound Optimization BY Quadratic
Approximation) algorithm [Powell et al., 2009]. BOBYQA is a derivative-free trust-
region method that builds local quadratic approximations of the objective function and
iteratively improves them. It is particularly well-suited for our setting because:

(1) Derivative-Free. Computing analytic gradients of the SMM objective with
respect to structural parameters requires differentiating through the equilibrium solver,
simulation, and moment computation steps. While automatic differentiation could
in principle provide gradients, the equilibrium solver includes iterative loops and
conditional logic that complicate differentiation. BOBYQA sidesteps this issue entirely.

(2) Bound Constraints. BOBYQA natively handles box constraints `i ≤ θi ≤ ui

without requiring penalty methods or barrier functions. This is crucial because several
parameters have economically meaningful bounds (e.g., ρ < 1 for substitution elasticity).
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(3) Noisy Objectives. SMM objectives are inherently noisy due to simulation Monte
Carlo error. BOBYQA’s trust-region framework is robust to moderate noise, as it makes
conservative steps based on local quadratic models rather than relying on exact gradients.

We configure BOBYQA with the following settings:

• Initial trust region radius: ρbeg = 0.2 (in unit-box scale)

• Final trust region radius: ρend = 10−8 (in unit-box scale)

• Maximum iterations: 2000

• Convergence criterion: ρ < ρend or relative improvement < 10−5

The initial radius of 0.2 allows BOBYQA to explore a relatively large neighborhood
around the starting point (the best GA solution), while the final radius of 10−8 ensures
high-precision convergence. In practice, the algorithm converges within 800-1200
iterations, well below the maximum.

A.3.2 Unit-Box Transformation

To improve numerical stability, we perform local optimization in a unit-box transformed
space. Let θ ∈ Rd be the original parameter vector with bounds [`, u], and define the
transformed variables:

zi =
θi − `i

ui − `i
, i = 1, . . . , d (32)

so that z ∈ [0, 1]d. The optimizer operates on z, and we transform back to θ when
evaluating the objective:

funit(z) = fSMM(`+ z� (u− `)) (33)

where � denotes elementwise multiplication. This transformation has two benefits:
First, it equalizes the scales of different parameters. Without transformation,

parameter i with a large range (ui− `i) would dominate the optimization step size relative
to parameter j with a small range. The unit-box transformation ensures all parameters are
treated symmetrically.

Second, it simplifies the trust region logic. In the original space, the trust region must
account for potentially asymmetric bounds. In the unit-box space, the trust region is
simply a hypercube [zk − ρ, zk + ρ]d clipped to [0, 1]d.
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A.3.3 Starting Point

The local search starts from the best parameter vector identified by the global search.
Denote this vector θ∗GA, with objective value f (θ∗GA). We transform θ∗GA to the unit-box
space:

z0 =
θ∗GA − `

u− `
(34)

and verify that z0 ∈ [0, 1]d (up to numerical tolerance). In rare cases where the GA found
a boundary solution, we clamp z0 to the interior: z0 ← max(10−10, min(1− 10−10, z0)).

A.3.4 Optimization Trajectory Tracking

A key implementation detail is that we track the best objective value encountered during
optimization, not just the final iteration’s objective. BOBYQA’s internal logic occasionally
takes exploratory steps that temporarily worsen the objective. To guard against this, we
maintain a running record:

• θ∗best: best parameter vector encountered

• f ∗best: best objective value encountered

• m∗best: model moments at the best parameter vector

After each iteration t, if f (θt) < f ∗best, we update these records. At termination, we report
θ∗best as the final estimate, regardless of whether the algorithm’s final iterate is better or
worse.

This tracking mechanism proved critical. In several test runs, BOBYQA’s final
objective was 2-3% worse than the best objective achieved during the trajectory, due to
late-stage exploration steps. By using the tracked best solution, we ensure that local
refinement always weakly improves upon the GA starting point.

A.3.5 Convergence and Output

The local search terminates when:

1. The trust region radius falls below ρend = 10−8, indicating that BOBYQA cannot
find any improving step within the trust region.

2. The relative improvement between consecutive iterations falls below 10−5: | ft −
ft−1|/ max(| ft|, 10−6) < 10−5.

3. The iteration count exceeds 2000 (rare; typically converges in 800-1200 iterations).
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Upon convergence, the algorithm saves a YAML file containing:

• Final parameter estimates

• Objective value at the optimum

• All model moments at the optimum, compared to data moments

• Total number of function evaluations

• Total elapsed time

A.4 Parameter Transformations

To enforce economic constraints and improve optimization performance, we transform
several parameters to ensure they satisfy their natural constraints. The following
transformations are applied:

Log-Transform (Positive Parameters). For parameters that must be strictly positive
(ψ0, ν, σz, φ), we optimize in log-space:

θ = exp(θ̃), θ̃ ∈ R (35)

This ensures positivity without requiring explicit constraints.
Tanh-Transform (Bounded Parameters). For the substitution elasticity ρ ∈ (0, 1), we

use a hyperbolic tangent transformation:

ρ =
1 + tanh(ρ̃)

2
, ρ̃ ∈ R (36)

which maps the real line R to the interval (0, 1).
Shifted-Log-Transform (Parameters Bounded Below by 1). For parameters that must

exceed 1, such as µ and χ:
θ = 1 + exp(θ̃), θ̃ ∈ R (37)

This enforces θ > 1 and ensures smooth derivatives.
Coupled Transform (Beta Distribution Parameters). The skill distribution

parameters (ah, bh) are jointly constrained to be positive. We optimize in log-space:

ah = exp(ãh), bh = exp(b̃h) (38)

Identity (Unbounded Parameters). For parameters without natural constraints (c0,
κ0, A0, A1), we optimize directly without transformation.
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These transformations are invertible, allowing us to report final estimates while
optimizing in the transformed space.

A.5 Computational Performance

Global Search. For 2024 estimation with 512 individuals over 1000 generations, the GA
evaluated approximately 512,000 parameter vectors. Distributed across 48 workers on
a SLURM cluster (Intel Xeon processors, 2.5 GHz), the wall-clock time was 36 hours.
Each objective evaluation took 35-50 seconds, depending on how quickly the equilibrium
solver converged. The parallel efficiency was approximately 88% (measured as ideal
time / actual time), with load imbalance due to heterogeneous convergence times across
parameter vectors.

Local Refinement. Starting from the best GA solution, BOBYQA required 1,047
function evaluations to converge, taking 11.2 hours on a single core. The initial objective
was 3.847, and the final objective was 2.996, representing a 22% improvement. The largest
parameter adjustments occurred for χ (amenity curvature) and σz (preference dispersion),
suggesting these parameters were most sensitive to local refinement.

Total Time. The complete two-step estimation for a single year (2019 or 2024) took
approximately 47 hours of wall-clock time: 36 hours for global search + 11 hours for local
refinement. For comparison, a naive single-step approach using only local optimization
from random starts would require testing hundreds of starting points to achieve similar
coverage, totaling thousands of hours of wall-clock time even with parallelization.

A.6 Robustness and Diagnostics

Convergence Diagnostics. For each estimation run, we verify convergence by checking:
(1) the trust region radius fell below ρend, (2) the objective function is stable (no
improvement for final 50 iterations), and (3) parameter values are in the interior of the
bounds (not on boundaries). All three criteria were satisfied for both 2019 and 2024
estimates.

Sensitivity to Starting Points. To assess sensitivity, we ran the local search from the
top 5 GA candidates (not just the best). All 5 trajectories converged to objective values
within 1% of each other, with parameter estimates within 5% of each other, indicating a
well-defined local optimum.

Comparison to Alternative Optimizers. We tested Nelder-Mead and simulated
annealing as alternative local refinement methods. BOBYQA consistently outperformed
both: Nelder-Mead converged more slowly (1,800+ evaluations) and sometimes violated
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bounds, while simulated annealing required careful tuning of the cooling schedule and
was less robust to noise.

B Data Appendix

This appendix provides comprehensive technical documentation for our data
construction, variable definitions, and imputation procedures. We describe all data
sources, sample restrictions, the machine learning approach for imputing pre-2022 remote
work shares, detailed validation of the teleworkability index, and the bootstrap procedure
for computing standard errors on empirical moments.

B.1 Data Sources and Sample Construction

We combine four primary data sources for our analysis, each serving a distinct role in the
empirical strategy.

Current Population Survey (CPS). Our primary data source is the monthly
CPS, obtained through IPUMS-CPS (Integrated Public Use Microdata Series). We
extract 152 monthly samples from January 2013 through August 2025, though our
main analysis focuses on 2019 (pre-pandemic) and 2024 (post-pandemic). The
extract includes 24 variables covering demographics (AGE, SEX, RACE, HISPAN,
EDUC), employment (OCC, IND, CLASSWKR, UHRSWORKT), earnings (EARNWEEK2,
HOURWAGE2), remote work (TELWRKPAY, TELWRKHR available 2022+), geography
(STATEFIP, METFIPS), identifiers (SERIAL, CPSIDP, PERNUM, MISH), and survey
weights (WTFINL).

Survey of Income and Program Participation (SIPP). To impute remote work
intensity (α) for pre-2022 CPS observations, we use SIPP person-month panel data. The
SIPP provides longitudinal telework histories at the person-month level, with variables
for occupation (mapped to SOC), industry (mapped to NAICS), demographics, and a
telework indicator (p_remote) that captures the share of work performed remotely in each
month. We use SIPP panels 2014, 2018, and 2020, aggregating person-months to create a
training dataset of approximately 500,000 observations.

Occupational Requirements Survey (ORS). We use the BLS Occupational
Requirements Survey (2021-2022 waves) as ground truth for training the teleworkability
index ψ. The ORS asks establishments whether telework is permitted as a regular part
of performing the job’s critical functions. This provides objective, establishment-level
assessments for 400+ occupations, which we use as the target variable for our machine
learning model.
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O*NET Database. The O*NET 27.2 database (released March 2023) provides
standardized occupational characteristics for training the ψ prediction model. We use 237
variables spanning work activities (41 items), work context (57 items), skills (35 items),
abilities (52 items), work styles (16 items), knowledge (33 items), and task statements
(variable by occupation). Each occupation in O*NET is identified by an 8-digit SOC code.

Labor Market Tightness Data. We obtain vacancy and unemployment data from the
Federal Reserve Economic Data (FRED) system. Monthly job openings come from the
Job Openings and Labor Turnover Survey (JOLTS series JTSJOL), and unemployment
rates come from the Current Population Survey (series UNRATE). We construct market
tightness as θ = v/u and the job-filling rate as q(θ) = θ−0.5, following the empirical
regularity documented by Shimer (2005).

B.2 Variable Construction and Sample Restrictions

This subsection documents the construction of key variables and the filters applied to
create our analytical sample.

B.2.1 Industry and Occupation Mapping

Industry Mapping. CPS industry codes (IND) are mapped to North American Industry
Classification System (NAICS) codes using IPUMS-provided crosswalks that account for
changes in coding schemes over time (1990, 2000, 2010, 2018 revisions). We create both
detailed NAICS (6-digit) and broad industry categories.

Occupation Mapping. CPS occupation codes (OCC) are mapped to 7-character
Standard Occupational Classification (SOC) codes, handling 2000, 2010, and 2018 SOC
revisions. We create SOC aggregations at major (2-digit), minor (3-digit), broad (5-digit),
and detailed (7-digit) levels.

B.2.2 Wage and Experience Variables

Wage Construction. Real hourly wages are constructed using HOURWAGE2 when
available, otherwise calculated as EARNWEEK2 / UHRSWORKT. We apply top-coding
adjustments following Autor et al. (2008): wages above the 99th percentile are Winsorized
at the 99th percentile value. All wages are deflated to 2019 dollars using the BLS CPI-U-RS
(Consumer Price Index Research Series) with monthly adjustment factors.

Experience Variable. Potential labor market experience is calculated as: experience =

AGE− education_years− 6, where education_years is imputed from CPS EDUC codes
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using standard conversion tables (e.g., high school = 12 years, bachelor’s degree = 16
years, master’s degree = 18 years). Experience is bounded at 0 for negative values.

B.2.3 Sample Restrictions

From the full CPS, we impose the following filters to create our analytical sample:
(1) Age 25-64 (prime working age)
(2) Employed (EMPSTAT = employed)
(3) Not self-employed (CLASSWKR 6= self-employed)
(4) Positive hours worked (UHRSWORKT > 0)
(5) Positive real wages
(6) Non-missing occupation and industry codes
(7) Non-missing survey weights (WTFINL > 0)

These restrictions yield final samples of 74,192 observations (2019) and 89,805
observations (2024), representing approximately 85% of prime-age employed workers in
the raw CPS.

B.3 Alpha Imputation Methodology

The CPS only began collecting telework data in May 2022. For pre-2022 analysis, we
require estimates of remote work intensity α for all workers. This subsection documents
our machine learning imputation procedure.2

B.3.1 Problem Statement and Training Data

Problem Statement. The CPS introduced variables TELWRKPAY (whether paid for
teleworking) and TELWRKHR (usual hours per week worked from home) in May 2022.
For 2018-2021, we need predicted values of α ∈ [0, 1].

Training Data. We use person-month observations from Survey of Income and
Program Participation (SIPP) panels 2014, 2018, and 2020, which include a telework
indicator capturing whether individuals worked from home in each reference month. The
SIPP provides rich occupation, industry, and demographic detail, with approximately
500,000 person-month observations covering 2013-2022. For each person-month, we
calculate p_remote as the telework indicator, treating this as our target variable that
proxies for α.

2Replication code: src/alpha_imputation/impute_alpha_realchars.py
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B.3.2 Model Specification

We train a LightGBM gradient-boosted regression model with the following specification:
Features (7 variables):

- OCCSOC (categorical): 7-character SOC code (500+ unique values)
- INDNAICS (categorical): NAICS industry code (300+ unique values)
- EDUC (categorical): Education level (10 categories)
- SEX (categorical): Gender (2 categories)
- YEAR (categorical): Calendar year (10 values)
- AGE (continuous): Age in years
- psi (continuous): Teleworkability index [0,1]

Target: p_remote (SIPP) or ALPHA (CPS post-2022), bounded [0,1]
Key Hyperparameters:

- n_estimators = 1000, learning_rate = 0.05, max_depth = 8

- num_leaves = 64, min_child_samples = 50

- categorical_feature = ["OCCSOC", "INDNAICS", "EDUC", "SEX", "YEAR"]

- objective = "regression" (L2 loss)

B.3.3 Model Performance and Validation

B.3.4 Model Performance and Validation

Cross-Validation. We perform 5-fold cross-validation on SIPP person-months, stratified
by occupation-education cells to preserve the joint distribution. The model achieves out-
of-sample R2 = 0.62 and mean absolute error (MAE) = 0.08 on held-out SIPP folds.

Validation on CPS Ground Truth. To assess imputation quality for our application,
we treat 2022-2024 CPS observations (which have true α values) as a validation set. We fit
the model on SIPP data, predict α for 2022-2024 CPS workers, and compare predictions to
actual TELWRKHR-based values.

Validation Results:
- Correlation: 0.71
- MAE: 0.08 (8 percentage points)
- Bias: -0.01 (slight underprediction)
- MAE by education: High school = 0.06, Some college = 0.07, Bachelor’s+ = 0.10
- MAE by occupation: Blue collar = 0.04, Service = 0.06, White collar = 0.11

Feature Importance. The model assigns the following importance scores:
- OCCSOC: 45% (occupation is dominant predictor)
- psi: 28% (teleworkability index captures technology)
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- INDNAICS: 15% (industry matters for firm policies)
- YEAR: 8% (time trends in adoption)
- AGE: 2%, SEX: 1%, EDUC: 1% (demographics less important)

B.3.5 Imputation Procedure and Robustness

Imputation. For 2018-2021 CPS observations, we predict α using the trained LightGBM
model, clipping predictions to [0,1]. For 2022-2024, we use the actual TELWRKHR /
UHRSWORKT values. The final dataset contains α for all years 2018-2024.

Robustness Checks. We verify imputation quality through three additional tests:
(1) Occupation stability: Compare 2021 imputed values to 2022 actual values within the
same occupations—correlation = 0.82, suggesting reasonable extrapolation.
(2) Alternative models: Random Forest and XGBoost yield similar MAE (0.09) and slightly
lower R2 (0.58), confirming LightGBM is appropriate.
(3) Simpler specifications: Dropping YEAR or demographics increases MAE to 0.11,
indicating these features contribute meaningfully.

B.4 Teleworkability Index (ψ): Detailed Validation

This subsection provides detailed validation tables and figures for the teleworkability
index ψ construction described in Section 3.2. The index is constructed using a two-
stage machine learning approach: (1) a Random Forest classifier predicts whether an
occupation has any remote work potential, and (2) a Random Forest regressor predicts
the degree of remote work potential for occupations classified as amenable. Both stages
are trained on BLS Occupational Requirements Survey (ORS) data as ground truth, with
O*NET occupational characteristics as features.

B.4.1 Model Performance

Table 5 reports the predictive accuracy of both stages on held-out test data. The first-
stage classifier achieves an F1-score of 0.948, driven by excellent recall (0.994) and
strong precision (0.906). This means the model successfully identifies nearly all truly
teleworkable occupations while maintaining low false positive rates. The second-stage
regressor explains 56.8% of variance in remote work potential (R² = 0.568) with a mean
absolute error of only 0.069 (6.9 percentage points). These metrics confirm that the ψ

index captures meaningful variation in occupational teleworkability.
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Table 5: Machine Learning Model Performance: Two-Stage Teleworkability Index
Construction

Metric Stage 1: Classifier Stage 2: Regressor

Primary Metrics
Precision 0.906 —
Recall 0.994 —
F1-Score 0.948 —
Accuracy 0.923 —

R² — 0.568
Mean Absolute Error (MAE) — 0.069
Root Mean Squared Error (RMSE) — 0.112
Correlation with Ground Truth — 0.754

Sample Information
Training Observations 812 623
Test Observations 204 156
Cross-Validation Folds 5 5

Notes: This table reports out-of-sample performance metrics for the two-stage Random Forest model
used to construct the teleworkability index ψ. Stage 1 (Classifier) predicts whether an occupation has
any remote work potential (binary classification). Stage 2 (Regressor) predicts the degree of remote
potential for occupations classified as amenable (continuous prediction on [0,1]). Both models are
trained on BLS Occupational Requirements Survey (ORS) data with O*NET occupational characteristics
as features. The high recall (0.994) in Stage 1 ensures nearly all teleworkable occupations are captured,
while the R² of 0.568 in Stage 2 indicates meaningful predictive power for the intensive margin. MAE is
reported in index units (0-1 scale), where 0.069 corresponds to 6.9 percentage points.

B.4.2 Feature Importance and Economic Intuition

To ensure the model is not just statistically accurate but also economically interpretable,
we examine which O*NET features drive predictions. Tables 6 and 7 report Mean
Decrease in Impurity (MDI) importance for the top 10 features in each stage.

For the classifier stage (Table 6), the ability to work remotely at all is determined
primarily by communication and coordination features. Electronic Mail (0.185),
Telephone use (0.092), and Face-to-Face Discussions (0.054) are top predictors, reflecting
that remote-amenable jobs require strong communication channels. Features like Contact
with Others and Working with Work Groups also rank highly, suggesting coordination
technology enables remote work.

For the regressor stage (Table 7), the degree of remote potential among amenable
occupations is predicted by physical task requirements. Handling and Moving Objects
(0.190), Controlling Machines and Processes (0.078), and Assisting and Caring for Others
(0.062) are top predictors with negative effects—occupations requiring these tasks score
lower on ψ. Conversely, Working with Computers (0.043) positively predicts higher
remote potential. This pattern confirms that ψ captures the technological feasibility of
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Table 6: Feature Importance: Stage 1 Classifier (Extensive Margin)

Rank O*NET Feature MDI Importance

1 Electronic Mail 0.185
2 Telephone 0.092
3 Interacting with Computers 0.067
4 Face-to-Face Discussions 0.054
5 Contact with Others 0.048
6 Freedom to Make Decisions 0.043
7 Establishing and Maintaining Relationships 0.039
8 Structured versus Unstructured Work 0.037
9 Communicating with Supervisors 0.035
10 Working with Work Group or Team 0.032

Cumulative Importance (Top 10) 0.632
Total Features in Model 86

Notes: This table reports Mean Decrease in Impurity (MDI) importance scores for the top 10 features
in the first-stage Random Forest classifier. The classifier predicts whether an occupation has any
potential for remote work (binary outcome). MDI measures the total reduction in node impurity (Gini
coefficient) attributable to splits on each feature, averaged across all trees in the forest. Higher values
indicate features that provide more discriminatory power. The dominance of communication-related
features (Electronic Mail, Telephone, Face-to-Face Discussions) reflects that remote work fundamentally
depends on the ability to coordinate and communicate without physical presence. The top 10 features
collectively account for 63.2% of the model’s total predictive importance. The classifier was trained on
812 occupations from the BLS Occupational Requirements Survey with 86 O*NET work activity, work
context, skill, and ability features.

remote work, not just worker preferences or firm policies.
Figure 10 provides a visual summary of feature importance across both stages,

showing the relative contribution of O*NET dimensions (work activities, work context,
skills, abilities).

B.4.3 Face Validity: Occupational Rankings

Table 8 lists occupations at the extremes of the ψ distribution. The index correctly
identifies knowledge-intensive roles requiring minimal physical presence (Actuaries
95%, Software Developers 92%, Financial Analysts 88%) as having high remote work
potential. Conversely, occupations requiring physical tasks or in-person service delivery
(Construction Workers 5%, Healthcare Support 2%, Personal Care Workers 2%) score
near zero. This face validity check confirms the index is capturing an intuitive economic
concept.
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Table 7: Feature Importance: Stage 2 Regressor (Intensive Margin)

Rank O*NET Feature MDI Importance

1 Handling and Moving Objects 0.190
2 Controlling Machines and Processes 0.078
3 Assisting and Caring for Others 0.062
4 Spend Time Standing 0.056
5 Performing General Physical Activities 0.051
6 Working with Computers 0.043
7 Spend Time Using Hands to Handle Objects 0.041
8 Inspecting Equipment, Structures, or Materials 0.038
9 Operating Vehicles or Equipment 0.035
10 Deal with Physically Aggressive People 0.032

Cumulative Importance (Top 10) 0.626
Total Features in Model 86

Notes: This table reports Mean Decrease in Impurity (MDI) importance scores for the top 10 features in
the second-stage Random Forest regressor. The regressor predicts the degree of remote work potential
(continuous outcome on [0,1]) for occupations classified as amenable in Stage 1. MDI measures the total
reduction in mean squared error attributable to splits on each feature, averaged across all trees. The
dominance of physical task requirements (Handling/Moving Objects, Controlling Machines, Physical
Activities) with negative effects indicates that even among potentially teleworkable occupations, those
requiring hands-on work have lower remote potential. Conversely, Working with Computers (rank 6)
positively predicts higher ψ values. The top 10 features account for 62.6% of the model’s predictive
importance. The regressor was trained on 623 occupations classified as having remote potential (Stage
1 positives) using 86 O*NET features.

B.5 Moment Computation and Bootstrap Standard Errors

This subsection documents the computation of the 14 empirical moments used in
structural estimation and the bootstrap procedure for obtaining standard errors.3

B.5.1 Target Moments

We compute 14 empirical moments per year (2019 and 2024) for structural estimation,
organized into three categories:

Distributional Moments (7):
(1) mean_logwage: Mean log real wage
(2) var_logwage: Variance of log real wages
(3) p90_p10_logwage: 90th-10th percentile log wage ratio
(4) mean_alpha: Mean remote work share
(5) var_alpha: Variance of remote work share
(6) inperson_share: Fraction with α ≤ 0.2 (mostly in-person)
(7) mean_psi: Mean teleworkability index

3Replication code: src/empirical/data_moments_lean.jl and bootstrap/compute_bootstrap_moments_threaded.jl
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Figure 10: Feature Importance Across Classification and Regression Stages
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Note: Bars show MDI importance for top 15 features in each stage. Blue = first-stage classifier, Orange =
second-stage regressor.

Regression Coefficients (5):
(8) wage_psi_slope: Linear coefficient on ψ in wage regression (βψ)
(9) wage_psi_curvature: Quadratic coefficient on ψ2 (βψ2)
(10) wage_alpha: Linear coefficient on α (βα)
(11) wage_alpha_curvature: Quadratic coefficient on α2 (βα2)
(12) alpha_psi_slope: Coefficient on ψ in α regression (sorting)

External Moments (2):
(13) market_tightness: θ = v/u from FRED JOLTS and UNRATE data
(14) job_filling_rate: q(θ) = θ−0.5 computed from market tightness

B.5.2 Regression Approach

Unified Regression. Rather than running separate regressions for each moment, we
estimate a single comprehensive wage regression per year:

log(wi) = βψψj + βψ2ψ2
j + βααi + βα2α2

i + X′iΓ + FEs + FEind + εi

where Xi includes age, age², experience, experience², sex, race, and education, and we
include fixed effects for state and industry. We estimate this using FixedEffectModels.jl

with CPS survey weights (WTFINL). From this single regression, we extract coefficients
βψ, βψ2 , βα, and βα2 as moments 8-11.

For moment 12 (sorting), we run a separate OLS regression of α on ψ with the same
controls and fixed effects, extracting the coefficient on ψ.
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Sample Filters. Beyond the main sample restrictions described in Appendix B.2,
moment computation requires non-missing α, non-missing ψ, finite log wage, and all
demographic controls present. After these filters, the moment computation samples
contain 72,450 observations (2019) and 87,230 observations (2024), representing 98%
retention from the main analysis sample.

B.5.3 Bootstrap Procedure

B.5.4 Bootstrap Procedure

To compute standard errors for the 14 moments, we implement a block bootstrap
stratified by occupation-education cells:

Step 1: Create Bootstrap Samples (N=500):
For each bootstrap iteration b = 1, . . . , 500:
- Identify unique cells defined by (SOC minor group × education category)
- Sample cells with replacement (approximately 150 cells)
- Within each sampled cell, sample workers with replacement
- Construct bootstrap dataset of size equal to original sample

This block structure preserves within-cell correlation in wages and remote work
patterns, which is critical for accurate standard error estimation when moments depend
on occupation-level variation.

Step 2: Compute Moments on Each Bootstrap Sample:
Using parallel computation (48 cores), for each bootstrap sample b:
- Load bootstrap dataset
- Apply same sample filters as original data
- Compute all 14 moments using identical procedures
- Save moments to disk

Step 3: Aggregate Standard Errors:
Load all 500 bootstrap moment vectors. For each moment m, compute:

SE(m) =

√√√√ 1
500

500

∑
b=1

(mb − m̄)2

where mb is the moment value in bootstrap sample b and m̄ is the mean across bootstraps.
Bootstrap Results. For 2019, distributional moments have SE ranging 0.002-0.015,

regression coefficients have SE ranging 0.008-0.025, and market tightness has SE = 0.012.
Standard errors for 2024 are similar in magnitude. These bootstrap SEs are used to
construct the weighting matrix W in SMM estimation, giving more weight to precisely

65



Figure 11: Remote Work Patterns by Education Level (Detailed)
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Note: Detailed comparison by education: (A) Remote work adoption (α), (B) Teleworkability potential (ψ),
and (C) Implementation gap (ψ− α).

estimated moments.

C Appendix Figures
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Table 8: Teleworkability Index: Occupations at the Distribution Extremes

Panel A: Highest Teleworkability (ψ)

Occupation ψ Score

Actuaries 0.95
Software Developers 0.92
Financial Analysts 0.88
Computer and Information Research Scientists 0.87
Statisticians 0.86
Operations Research Analysts 0.84
Accountants and Auditors 0.82
Financial Managers 0.81
Mathematicians 0.80
Market Research Analysts 0.79

Panel B: Lowest Teleworkability (ψ)

Occupation ψ Score

Personal Care Aides 0.02
Home Health Aides 0.02
Nursing Assistants 0.03
Construction Laborers 0.05
Food Preparation Workers 0.06
Janitors and Cleaners 0.07
Automotive Service Technicians 0.08
Retail Salespersons 0.09
Truck Drivers (Heavy) 0.10
Childcare Workers 0.11

Notes: This table displays the 10 occupations with the highest and lowest teleworkability index (ψ)
scores to demonstrate face validity. The index ranges from 0 (no remote work potential) to 1 (fully
teleworkable). High-ψ occupations are knowledge-intensive roles requiring minimal physical presence
or hands-on tasks (e.g., Actuaries, Software Developers, Financial Analysts). These positions involve
primarily cognitive work that can be performed via computer and communication technology. Low-
ψ occupations require physical presence for in-person service delivery, hands-on manipulation of
objects, or operation of equipment/vehicles (e.g., Personal Care Aides, Construction Laborers, Food
Preparation Workers). The clear economic intuition behind these rankings validates that the machine
learning model captures technological feasibility rather than artifacts of the training data. Occupations
are defined at the SOC 6-digit level and mapped to CPS occupation codes for analysis.
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