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Abstract

This paper examines whether AI’s dual effects on labor markets—automation and
augmentation—operate through distinct human capital channels. Using Microsoft’s
“Working with AI” telemetry data matched to O*NET occupations and BLS employ-
ment statistics (N=107,901 observations), I test whether automation primarily sub-
stitutes for codified knowledge (formal education) while augmentation complements
tacit knowledge (on-the-job experience). Preliminary results suggest education strongly
predicts both automation and augmentation exposure, with surprising patterns for
experience-based knowledge.
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1 Introduction

Artificial intelligence is rapidly transforming labor markets, but unlike previous technolog-
ical revolutions, AI has dual effects: it can automate tasks (substituting for labor) and
augment tasks (enhancing productivity). Understanding which effect dominates—and for
which workers—is crucial for predicting AI’s impact on employment and inequality.

This paper addresses two questions. First, do AI’s automation and augmentation effects
operate through distinct channels? Specifically, does automation primarily substitute for
codified knowledge (formal education), while augmentation complements tacit knowledge
(on-the-job experience)? Second, can these mechanisms explain recent evidence that AI
disproportionately displaces young workers while leaving senior workers unaffected?

Using Microsoft’s “Working with AI” telemetry data matched to O*NET occupations and
BLS employment statistics, I construct occupation-level measures that separately identify
AI’s capacity to automate (AAS) versus augment (AGS) labor. I test whether these operate
through different human capital channels by regressing AI exposure on measures of codified
knowledge (Kc, from education) and tacit knowledge (Kt, from experience).

The results reveal strong education gradients: a one-standard-deviation increase in Kc

predicts 42.5 points higher automation exposure and 1.3 points higher augmentation (both
p<0.001). Surprisingly, experience also predicts higher automation (8.4, p<0.001) but lower
augmentation (-0.27, p<0.001). These patterns suggest that modern workplace experience
may involve more routinized tasks than traditional craft skills, making it susceptible to
automation, while AI augmentation tools are designed for educated-intensive workflows.

I embed these mechanisms in a lifecycle model combining Ben-Porath human capital
accumulation with Acemoglu-Restrepo task-based production. AI shocks shift the relative
rental rates of codified versus tacit knowledge, generating heterogeneous impacts across
occupations and age groups. Young workers with high Kc but low Kt face automation
risk, while senior workers with both knowledge types are shielded—consistent with recent
empirical evidence.

This paper makes three contributions. First, it provides the first empirical decomposition
of AI’s dual effects using occupation-level telemetry data. Second, it validates a knowledge-
specific mechanism linking AI exposure to human capital composition. Third, it develops
a structural framework that can rationalize observed age-employment gradients from AI
adoption.

The paper proceeds as follows. Section 2 reviews related literature. Section 5 presents the
theoretical framework. Section 3 describes data construction. Section 4 presents the bridge
regressions testing the AI-knowledge hypothesis. Section 6 discusses structural estimation.
Section 7 presents results. Section 8 concludes.
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2 Literature Review

This paper contributes to three literatures on task-based models, AI exposure measurement,
and human capital theory.

Task-Based Models. The task-based approach (Autor et al., 2003; Acemoglu and
Autor, 2011) analyzes how technology affects specific job tasks rather than broad skill cat-
egories. Acemoglu and Restrepo (2019) formally distinguish automation (task substitution)
from task creation, showing automation reduces labor demand while task creation increases
it. My framework extends this by adding augmentation—where AI enhances productivity
in existing tasks rather than substituting or creating them.

AI Exposure Measurement. Felten et al. (2021) link AI capabilities to O*NET tasks
using expert assessments. Webb (2020) measure exposure from patent text similarity. Bryn-
jolfsson et al. (2023) construct GPT exposure indices. Brynjolfsson et al. (2025) document
13% employment declines for young workers in high-AI occupations post-ChatGPT. I use
Microsoft Copilot telemetry providing direct observation of automation versus augmentation
rather than predicted exposure.

Human Capital. Ben-Porath (1967) develops the lifecycle model where workers allo-
cate time between work and human capital investment. Huggett et al. (2011) embed this
in general equilibrium. I distinguish codified knowledge (education) from tacit knowledge
(experience), allowing differential AI impacts on each type—connecting to skill obsolescence
literature (Violante, 2002) but focusing on AI’s dual effects.

3 Data

I construct AI exposure measures at the occupation level by combining three data sources:
Microsoft’s “Working with AI” telemetry data, O*NET occupational characteristics, and
BLS employment statistics.

3.1 Microsoft “Working with AI” Dataset

Tomlinson et al. (2025) provide anonymized telemetry from Microsoft Bing Copilot, mapping
332 Intermediate Work Activities (IWAs) to AI capabilities. For each IWA, the dataset
includes:

• share_ai: Frequency of AI usage (0-1 scale), capturing how often workers use AI tools
for the activity

• completion_ai: AI’s ability to complete the task autonomously (0-1 scale)
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• impact_scope_ai: Breadth of task impact within workflow (0-1 scale)

I construct two measures:

• Automation (AAS): completion_ai×impact_scope_ai for activities where share_ai ≥
0.0005. This captures AI’s potential to fully replace human labor in high-impact tasks.

• Augmentation (AGS): share_ai, measuring AI usage frequency as a complementary
productivity tool.

3.2 O*NET Occupational Characteristics

O*NET version 28.0 (2024) provides comprehensive data on 957 six-digit SOC occupations.
I use two primary components:

Intermediate Work Activities (IWAs): O*NET’s taxonomy of 332 generalized work
activities serves as the crosswalk between Microsoft’s AI data and occupations. Each oc-
cupation has importance ratings (1-5 scale) for relevant IWAs, which I use as weights to
aggregate AI scores from the IWA level to occupations:

AI Scoreocc =
∑
IWA

wIWA∑
wIWA

· AI ScoreIWA

Human Capital Measures: From O*NET’s Education, Training, and Experience
(ETE) data:

• Codified Knowledge (Kc): “Required Level of Education” mapped to years (high
school = 12, associate’s = 14, bachelor’s = 16, master’s = 18, doctorate = 20), averaged
across occupational respondents and standardized to mean 0, SD 1.

• Tacit Knowledge (Kt): Composite index combining (i) “Related Work Experience
Required” (months), (ii) “On-the-Job Training” duration (categorical, converted to
months), and (iii) “On-Site/In-Plant Training” requirements. Standardized to mean 0,
SD 1.

The correlation between Kc and Kt is 0.394, indicating they capture distinct dimensions
of occupational human capital. High-Kc occupations include Physicians (20 years education),
Software Developers (16), and Accountants (16). High-Kt occupations include Construction
Managers, Electricians, and Police Officers.
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3.3 BLS Occupational Employment Statistics

The BLS OES database provides annual employment and wage data by occupation, industry,
and metropolitan area for 1988-2024. I use the most recent available year (2023) to match
with contemporary AI exposure measures. Key variables include:

• Employment counts at occupation × 6-digit NAICS industry × metropolitan area level

• Mean and median wages (annual and hourly)

• Geographic coverage: National, state, and 12 large metropolitan statistical areas

3.4 Sample Construction

Merging Microsoft AI scores (874 occupations), O*NET human capital measures (957 occu-
pations), and BLS employment data yields 107,901 observations at the occupation × area
× industry level:

• 738 unique occupations (matched across all three sources)

• 13 geographic areas (national + 12 metro areas)

• 444 industries (6-digit NAICS)

AAS (automation) ranges from 0 to 465 (mean = 92, SD = 100), while AGS (augmenta-
tion) ranges from 0 to 22 (mean = 4.1, SD = 4.2). Education (Kc) and experience (Kt) are
standardized by construction.

4 Bridge Regressions: Testing the AI-Knowledge Hy-

pothesis

This section presents reduced-form evidence testing whether AI’s dual effects—automation
(AAS) and augmentation (AGS)—operate through distinct human capital channels. These
“bridge regressions” establish the empirical foundation for our structural model by validating
that AI shocks differentially affect occupations based on their knowledge composition.

4.1 Empirical Strategy

We estimate occupation-level regressions:
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AASijk = α0 + α1Kc,i + α2Kt,i + λj + δk + εijk (1)

AGSijk = γ0 + γ1Kc,i + γ2Kt,i + λj + δk + νijk (2)

where i indexes occupations, j indexes industries (6-digit NAICS), k indexes geographic
areas (metropolitan areas), AAS and AGS are automation and augmentation scores from
Microsoft’s “Working with AI” dataset (Tomlinson et al., 2025), Kc and Kt are standardized
human capital measures from O*NET, and λj, δk are industry and area fixed effects.

Hypotheses (from research design):

• H1 (Automation): α1 > 0 (targets codified knowledge), α2 < 0 (tacit provides
shield)

• H2 (Augmentation): γ1 > 0, γ2 > 0 (complements both knowledge types)

We run three specifications: (1) baseline without controls, (2) adding industry and area
fixed effects (443 industries, 12 areas), and (3) adding annual mean wage control. Data are
described in Section 3.

4.2 Results

Automation (Table 1): Column (1) shows baseline OLS: Kc = 38.6*** (p < 0.001),
strongly confirming H1’s prediction that automation targets educated workers. However,
Kt = 9.9*** enters positively, contradicting the hypothesis that experience shields against
automation. This relationship is robust: adding industry/area FE (col 2) yields Kc =
42.0***, Kt = 8.5***, and the full specification with wage controls (col 3) gives Kc =
42.5***, Kt = 8.4***. R-squared increases from 0.133 to 0.163.

Augmentation (Table 2): The results present a stronger puzzle. While Kc positively
predicts augmentation (1.10***, p < 0.001), Kt enters negatively (-0.36***, p < 0.001),
directly contradicting H2. This is robust across specifications: with FE, Kc = 1.13***, Kt

= -0.40***; full specification Kc = 1.30***, Kt = -0.27***. R-squared reaches 0.060.

4.3 Interpretation and Implications

Key Finding: AI exposure is strongly mediated by human capital composition, with edu-
cation (Kc) playing a dominant role in both automation and augmentation. This validates
the central mechanism of our structural model.

Unexpected Results: The positive Kt for automation and negative Kt for augmenta-
tion contradict initial hypotheses but suggest important refinements:
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Table 1: Automation (AAS) and Human Capital: Three Specifications

Dependent variable: Automation (AAS)

Baseline + Fixed Effects + Wage

(1) (2) (3)

Constant 82.515∗∗∗ 55.815∗∗∗ 60.330∗∗∗
(0.289) (3.136) (3.227)

Kc (Education) 38.649∗∗∗ 41.041∗∗∗ 42.501∗∗∗
(0.392) (0.401) (0.471)

Kt (Experience) 9.865∗∗∗ 7.266∗∗∗ 8.354∗∗∗
(0.323) (0.327) (0.375)

Wage ($1000s) -0.000∗∗∗
(0.000)

Industry FE No Yes Yes
Area FE No Yes Yes

Observations 107,901 107,901 107,901
R2 0.133 0.163 0.163
Adjusted R2 0.133 0.159 0.159

Notes: Standard errors in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Industry FE: 443 industries (6-digit NAICS). Area FE: 12 metropolitan areas.
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Table 2: Augmentation (AGS) and Human Capital: Three Specifications

Dependent variable: Augmentation (AGS)

Baseline + Fixed Effects + Wage

(1) (2) (3)

Constant 3.088∗∗∗ 2.210∗∗∗ 2.725∗∗∗
(0.013) (0.137) (0.141)

Kc (Education) 1.096∗∗∗ 1.131∗∗∗ 1.298∗∗∗
(0.017) (0.018) (0.021)

Kt (Experience) -0.355∗∗∗ -0.395∗∗∗ -0.271∗∗∗
(0.014) (0.014) (0.016)

Wage ($1000s) -0.000∗∗∗
(0.000)

Industry FE No Yes Yes
Area FE No Yes Yes

Observations 107,901 107,901 107,901
R2 0.037 0.058 0.060
Adjusted R2 0.037 0.054 0.056

Notes: Standard errors in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Industry FE: 443 industries (6-digit NAICS). Area FE: 12 metropolitan areas.
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1. Modern experience may be codifiable: Unlike traditional craft skills, modern
“experience” (e.g., software patterns, business processes) may involve learnable routines
susceptible to automation.

2. Augmentation tool design: Microsoft Copilot may be optimized for workflows
common in educated-intensive occupations (coding, writing, analysis) rather than
experience-based tasks.

3. Adoption barriers: Older/experienced workers may face higher costs adopting aug-
mentation tools, or tools may complement recent formal training more than on-the-job
experience.

Economic Magnitudes: Moving from 25th to 75th percentile of Kc (≈ 1.3 SD) asso-
ciates with a 55-point AAS increase (1.2 SD of automation exposure) and 1.7-point AGS
increase (0.5 SD).

Structural Model Implications: These findings motivate our Ben-Porath-Acemoglu-
Restrepo framework where AI shocks differentially affect Rc and Rt. The unexpected
signs suggest richer modeling: perhaps distinguishing codifiable vs. non-codifiable expe-
rience, or skill-biased adoption of augmentation. The core mechanism—knowledge-specific
AI impacts—remains validated, with education effects consistent and economically large
across all specifications.

5 Theoretical Framework

We develop an overlapping generations model integrating Acemoglu-Restrepo task-based
production with Ben-Porath human capital accumulation. The framework endogenizes equi-
librium rental rates for codified knowledge (Kc) and tacit knowledge (Kt), allowing us to
trace how AI shocks differentially affect workers by age.

5.1 Production: Task-Based Framework

Firms produce final output Y by aggregating a continuum of tasks i ∈ [0, 1]:

Y =

(∫ 1

0

y(i)
σ−1
σ di

) σ
σ−1

(3)

where σ is the elasticity of substitution between tasks. Tasks are allocated across three
production technologies based on thresholds IK and IL:
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y(i) =


AK · k(i) if i ∈ [0, IK ] (Automated tasks)

Ac ·Kc(i) if i ∈ (IK , IL] (Codified tasks)

At ·Kt(i) if i ∈ (IL, 1] (Tacit tasks)

(4)

where k(i), Kc(i), and Kt(i) are input allocations to task i, and (AK , Ac, At) are productivi-
ties. Capital k substitutes for routine tasks, codified knowledge Kc performs tasks requiring
formal education, and tacit knowledge Kt performs tasks requiring experience.

Equilibrium Rental Rates: Competitive profit maximization implies zero profits in
each task segment. The unit cost of producing y(i) equals the output price (normalized to
1). This yields first-order conditions that pin down equilibrium rental rates:

Rc = Rc(Kc, Kt;Ac, At, IK , IL, σ) (5)

Rt = Rt(Kc, Kt;Ac, At, IK , IL, σ) (6)

The rental rates depend on aggregate human capital supplies (Kc, Kt) (derived from
summing individual hc and ht,j across agents), task productivities, task allocation thresholds,
and the elasticity of substitution. Key properties: (i) ∂Rc/∂Kc < 0 and ∂Rt/∂Kt < 0

(diminishing returns), (ii) ∂Rc/∂IK < 0 and ∂Rt/∂IL < 0 (automation reduces demand).

5.2 Human Capital Accumulation

Agents live J periods (ages 22-65). Each enters with fixed codified knowledge hc (from
education) and minimum tacit knowledge ht,1. At age j, agents choose time allocation
sj ∈ [0, 1] for skill investment versus work lj = 1 − sj. They maximize expected lifetime
utility:

Vj(ht,j) = max
sj∈[0,1]

{u(cj) + βE[Vj+1(ht,j+1)]} (7)

subject to:
Income and Consumption: Agents are hand-to-mouth (no financial savings), consum-

ing all labor income:

cj = Incomej = (Rc · hc +Rt · ht,j)︸ ︷︷ ︸
Human capital rental

· (1− sj)︸ ︷︷ ︸
Work time

(8)

Tacit Knowledge Accumulation (Ben-Porath):

ht,j+1 = (1− δ)ht,j + A(hc · sj)α (9)
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where δ ∈ (0, 1) is depreciation, A > 0 is learning productivity, and α ∈ (0, 1) captures dimin-
ishing returns. Crucially, codified knowledge hc serves as input to tacit learning—education
enables experience accumulation. This implies higher-educated workers accumulate tacit
skills faster.

Optimal Policy: The agent’s optimal investment policy s∗j(ht,j;Rc, Rt) balances current
income loss from time spent learning against future income gains from higher ht,j+1. The
solution exhibits standard lifecycle patterns: sj decreases with age as remaining working
years shrink and ht,j rises.

Life-Cycle Dynamics: Young workers (low ht,j) earn primarily from Rc · hc, invest
heavily (sj high) to build tacit skills. Senior workers (high ht,j) earn from both Rc · hc and
Rt ·ht,j, reduce investment (sj → 0). This generates endogenous age-heterogeneous exposure
to shocks affecting Rc versus Rt.

5.3 AI Shocks: Automation and Augmentation

We model AI as shifting task allocation and productivities, guided by our empirical findings
(Section 4):

Automation (AAS): The positive coefficients on both Kc and Kt suggest automation
targets formal procedures and routinized experience. We model this as rightward shifts in
both thresholds: IK → I ′K (automating codified tasks) and IL → I ′L (automating routine
tacit tasks). This shrinks demand for both skill types:

∆RAAS
c < 0, ∆RAAS

t < 0 (10)

Augmentation (AGS): The positive Kc coefficient and negative Kt coefficient indi-
cate augmentation tools (e.g., Microsoft Copilot) are designed for educated workers, not
experience-intensive occupations. We model this as a productivity boost to codified tasks:
Ac → A′

c > Ac. This raises codified knowledge returns:

∆RAGS
c > 0, ∆RAGS

t = 0 (11)

Net Effect: The total AI shock combines automation and augmentation:

∆Rc = ∆RAAS
c +∆RAGS

c (12)

∆Rt = ∆RAAS
t (13)

For young workers (income ≈ Rc · hc), the net effect depends on whether augmentation’s
positive impact dominates automation’s negative impact on Rc. For senior workers (income
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≈ Rc · hc + Rt · ht,j), they face additional downward pressure from ∆Rt < 0, but their
diversified human capital provides partial insurance.

5.4 Connection to Empirical Evidence

This framework directly rationalizes Brynjolfsson et al. (2025)’ finding that young workers
face 13% employment declines post-ChatGPT while senior workers are unaffected.

Age-Heterogeneous Wage Effects: Consider the income change for workers at dif-
ferent lifecycle stages:

• Young workers (j small, ht,j ≈ ht,1): Income ≈ Rc · hc. The wage shock is:

∆Incomeyoung ≈ hc ·∆Rc = hc · (∆RAAS
c +∆RAGS

c ) (14)

The net effect is theoretically ambiguous: automation pushes Rc down, augmentation
pushes it up.

• Senior workers (j large, ht,j ≫ ht,1): Income ≈ Rc · hc +Rt · ht,j. The wage shock is:

∆Incomesenior ≈ hc ·∆Rc + ht,j ·∆Rt = hc · (∆RAAS
c +∆RAGS

c ) + ht,j ·∆RAAS
t (15)

The Rt component unambiguously falls (∆RAAS
t < 0), but their diversified human

capital (hc, ht,j) provides partial insurance.

Employment Effects via Wage Rigidity: Introducing a wage floor Rc (e.g., from
institutional rigidities, efficiency wages, or search frictions) generates the BCC employment
pattern:

1. If the AI shock yields R∗
c < Rc (i.e., the equilibrium Rc from equations 5 is below the

floor), the observed wage remains at Rc.

2. Firms cannot cut young workers’ wages, so they adjust on the extensive margin: re-
duce hiring of new young workers. This manifests as employment declines concentrated
among entrants and early-career workers.

3. Senior workers’ total compensation (Rc·hc+Rt·ht,j) may remain above their reservation
wage even with ∆Rt < 0, so they remain employed. Additionally, if Rt adjusts more
flexibly (less institutional rigidity for experience premia), senior workers’ wages can
partially adjust without employment losses.

4. Empirical prediction: The model predicts d(Employment)
d(Age) > 0 post-shock—exactly the

"canaries in the coal mine" gradient observed in the data.
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Investment Response: Forward-looking young workers anticipate lower future Rt (due
to ∆RAAS

t < 0). This reduces the return to tacit skill accumulation, leading them to:

• Reduce investment sj (work more now, learn less)

• Switch to higher-hc occupations where augmentation benefits dominate

• Exit labor force or shift to less-automatable sectors

This amplifies current income losses and can trigger occupational reallocation, consistent
with the large employment effects observed for young workers despite modest estimated wage
effects in aggregate studies.

6 Structural Estimation

[To be developed: Simulated Method of Moments estimation strategy, calibration targets,
identification.]

7 Results

[To be developed: Counterfactual simulations, welfare analysis, age-heterogeneous impacts.]

8 Conclusion

This paper provides empirical evidence that AI’s dual effects—automation and augmenta-
tion—operate through distinct human capital channels. Education strongly predicts both
types of AI exposure, while experience shows unexpected patterns: positive correlation with
automation but negative with augmentation. These findings validate a mechanism where
AI shocks differentially affect returns to codified versus tacit knowledge, with implications
for understanding age-heterogeneous employment effects and designing effective retraining
policies.

Future work will complete the structural model estimation and quantify welfare effects
across different worker types.
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